高数题(请把答案用图片的形式上传,过程要详细点,谢谢!)
1个回答
展开全部
∫xe^arctanxdx/(1+x^2)^(3/2)
x=tanu dx=secu^2 cosu=1/√1+x^2) sinu= x/√(1+x^2)
=∫e^u tanusecu^2du/secu^3
=∫e^utanucosudu
=∫e^usinudu=(1/2)e^u(sinu-cosu)+C=(1/2)e^arctanx *(x-1)/√(1+x^2) +C
∫e^usinu
=∫sinude^u
=e^usinu-∫e^ucosudu
=e^usinu-∫cosude^u
=e^usinu-e^ucosu-∫e^usinudu
2∫e^usiudu=e^u(sinu-cosu)
∫e^usinu=(1/2)e^u(sinu-cosu)
x=tanu dx=secu^2 cosu=1/√1+x^2) sinu= x/√(1+x^2)
=∫e^u tanusecu^2du/secu^3
=∫e^utanucosudu
=∫e^usinudu=(1/2)e^u(sinu-cosu)+C=(1/2)e^arctanx *(x-1)/√(1+x^2) +C
∫e^usinu
=∫sinude^u
=e^usinu-∫e^ucosudu
=e^usinu-∫cosude^u
=e^usinu-e^ucosu-∫e^usinudu
2∫e^usiudu=e^u(sinu-cosu)
∫e^usinu=(1/2)e^u(sinu-cosu)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询