PYTHON UnicodeDecodeError: 'ascii' codec can't decode byte 0xa8 in position 6: ordi
from__future__importdivision,print_function,absolute_import#Importtflearnandsomehelpe...
from __future__ import division, print_function, absolute_import
# Import tflearn and some helpers
import tflearn
from tflearn.data_utils import shuffle
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
import pickle
# Load the data set
X, Y, X_test, Y_test = pickle.load(open("full_dataset.pkl", "rb"))
# Shuffle the data
X, Y = shuffle(X, Y)
# Make sure the data is normalized
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
# Create extra synthetic training data by flipping, rotating and blurring the
# images on our data set.
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_rotation(max_angle=25.)
img_aug.add_random_blur(sigma_max=3.)
# Define our network architecture:
# Input is a 32x32 image with 3 color channels (red, green and blue)
network = input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
# Step 1: Convolution
network = conv_2d(network, 32, 3, activation='relu')
# Step 2: Max pooling
network = max_pool_2d(network, 2)
# Step 3: Convolution again
network = conv_2d(network, 64, 3, activation='relu')
# Step 4: Convolution yet again
network = conv_2d(network, 64, 3, activation='relu')
# Step 5: Max pooling again
network = max_pool_2d(network, 2)
# Step 6: Fully-connected 512 node neural network
network = fully_connected(network, 512, activation='relu')
# Step 7: Dropout - throw away some data randomly during training to prevent over-fitting
network = dropout(network, 0.5)
# Step 8: Fully-connected neural network with two outputs (0=isn't a bird, 1=is a bird) to make the final prediction
network = fully_connected(network, 2, activation='softmax')
# Tell tflearn how we want to train the network
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
# Wrap the network in a model object
model = tflearn.DNN(network, tensorboard_verbose=0, checkpoint_path='bird-classifier.tfl.ckpt')
# Train it! We'll do 100 training passes and monitor it as it goes.
model.fit(X, Y, n_epoch=100, shuffle=True, validation_set=(X_test, Y_test),
show_metric=True, batch_size=96,
snapshot_epoch=True,
run_id='bird-classifier')
# Save model when training is complete to a file
model.save("bird-classifeir.tfl")
print("Network trained and saved as bird-classifier.tfl!")
错误:
UnicodeDecodeError: 'ascii' codec can't decode byte 0xa8 in position 6: ordinal not in range(128)
该如何更改代码 展开
# Import tflearn and some helpers
import tflearn
from tflearn.data_utils import shuffle
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
import pickle
# Load the data set
X, Y, X_test, Y_test = pickle.load(open("full_dataset.pkl", "rb"))
# Shuffle the data
X, Y = shuffle(X, Y)
# Make sure the data is normalized
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
# Create extra synthetic training data by flipping, rotating and blurring the
# images on our data set.
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_rotation(max_angle=25.)
img_aug.add_random_blur(sigma_max=3.)
# Define our network architecture:
# Input is a 32x32 image with 3 color channels (red, green and blue)
network = input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
# Step 1: Convolution
network = conv_2d(network, 32, 3, activation='relu')
# Step 2: Max pooling
network = max_pool_2d(network, 2)
# Step 3: Convolution again
network = conv_2d(network, 64, 3, activation='relu')
# Step 4: Convolution yet again
network = conv_2d(network, 64, 3, activation='relu')
# Step 5: Max pooling again
network = max_pool_2d(network, 2)
# Step 6: Fully-connected 512 node neural network
network = fully_connected(network, 512, activation='relu')
# Step 7: Dropout - throw away some data randomly during training to prevent over-fitting
network = dropout(network, 0.5)
# Step 8: Fully-connected neural network with two outputs (0=isn't a bird, 1=is a bird) to make the final prediction
network = fully_connected(network, 2, activation='softmax')
# Tell tflearn how we want to train the network
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
# Wrap the network in a model object
model = tflearn.DNN(network, tensorboard_verbose=0, checkpoint_path='bird-classifier.tfl.ckpt')
# Train it! We'll do 100 training passes and monitor it as it goes.
model.fit(X, Y, n_epoch=100, shuffle=True, validation_set=(X_test, Y_test),
show_metric=True, batch_size=96,
snapshot_epoch=True,
run_id='bird-classifier')
# Save model when training is complete to a file
model.save("bird-classifeir.tfl")
print("Network trained and saved as bird-classifier.tfl!")
错误:
UnicodeDecodeError: 'ascii' codec can't decode byte 0xa8 in position 6: ordinal not in range(128)
该如何更改代码 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询