已知函数f(x)=a(x-1)-2lnx,g(x)=xe^1-x(其中a∈R,e为自然对数底数)

(1)求函数g(x)在(0,e]上的值域(2)若不等式f(x)>0对任意x∈(0,1/2)恒成立,求实数a的取值范围。(3)若对于任意给定的x0∈(0,e],在(0,e]... (1)求函数g(x)在(0,e]上的值域 (2)若不等式f(x)>0对任意x∈(0,1/2)恒成立,求实数a的取值范围。 (3)若对于任意给定的x0∈(0,e],在(0,e]上总存在两个不同的Xi(i=1,2),使得f(Xi)=g(x0)成立,求a的取值范围。 要求详细步骤,急!好的50分。 展开
 我来答
564283947
2012-01-16
知道答主
回答量:29
采纳率:0%
帮助的人:9.3万
展开全部
解:(I)当a=1时,f(x)=x-1-2lnx,则f'(x)=1-$\frac{2}{x}$,
由f'(x)>0,得x>2;由f'(x)<0,得0<x<2.
故f(x)的单调减区间为(0,2],单调增区间为[2,+∞);
(II)因为f(x)<0在区间$(0,\frac{1}{2})$上恒成立不可能,
故要使函数$f(x)在(0,\frac{1}{2})$上无零点,
只要对任意的$x∈(0,\frac{1}{2})$,f(x)>0恒成立,即对$x∈(0,\frac{1}{2}),a>2-\frac{2lnx}{x-1}$恒成立.
令$l(x)=2-\frac{2lnx}{x-1},x∈(0,\frac{1}{2})$,则$l(x)=-\frac{{\frac{2}{x}(x-1)-2lnx}}{{{{(x-1)}^2}}}=\frac{{2lnx+\frac{2}{x}-2}}{{{{(x-1)}^2}}}$,
再令$m(x)=2lnx+\frac{2}{x}-2,x∈(0,\frac{1}{2})$,
则$m'(x)=-\frac{2}{x^2}+\frac{2}{x}=\frac{-2(1-x)}{x^2}<0$,故m(x)在$(0,\frac{1}{2})$上为减函数,于是$m(x)>m(\frac{1}{2})=2-2ln2>0$,
从而,l(x)>0,于是l(x)在$(0,\frac{1}{2})$上为增函数,所以$l(x)<l(\frac{1}{2})=2-4ln2$,
故要使$a>2-\frac{2lnx}{x-1}$恒成立,只要a∈[2-4ln2,+∞),
综上,若函数f(x)在$(0,\frac{1}{2})$上无零点,则a的最小值为2-4ln2;
(III)g'(x)=e1-x-xe1-x=(1-x)e1-x,
当x∈(0,1)时,g'(x)>0,函数g(x)单调递增;
当x∈(1,e]时,g'(x)<0,函数g(x)单调递减.
又因为g(0)=0,g(1)=1,g(e)=e•e1-e>0,
所以,函数g(x)在(0,e]上的值域为(0,1].
当a=2时,不合题意;当a≠2时,f'(x)=$2-a-\frac{2}{x}=\frac{(2-a)x-2}{x}=\frac{{(2-a)(x-\frac{2}{2-a})}}{x}$,x∈(0,e]
当x=$\frac{2}{2-a}$时,f'(x)=0.
由题意得,f(x)在(0,e]上不单调,故$0<\frac{2}{2-a}<e$,即$a<2-\frac{2}{e}$①
此时,当x变化时,f'(x),f(x)的变化情况如下:

又因为,当x→0时,f(x)→+∞,
$f(\frac{2}{2-a})=a-2ln\frac{2}{2-a},f(e)=(2-a)(e-1)-2$,
所以,对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),
使得f(xi)=g(x0)成立,当且仅当a满足下列条件:
$\left\{\begin{array}{l}{f(\frac{2}{2-a})≤0}\\{f(e)≥1}\end{array}\right.$即$\left\{\begin{array}{l}{a-2ln\frac{2}{2-a}≤0②}\\{(2-a)(e-1)-2≥1③}\end{array}\right.$
令h(a)=$a-2ln\frac{2}{2-a},a∈(-∞,2-\frac{2}{e})$,
则h$'(a)=1-2[ln2-ln(2-a)]'=1-\frac{2}{2-a}=\frac{a}{a-2}$,令h'(a)=0,得a=0或a=2,
故当a∈(-∞,0)时,h'(a)>0,函数h(a)单调递增;
当$a∈(0,2-\frac{2}{e})$时,h'(a)<0,函数h(a)单调递减.
所以,对任意$a∈(-∞,2-\frac{2}{e})$,有h(a)≤h(0)=0,
即②对任意$a∈(-∞,2-\frac{2}{e})$恒成立.
由③式解得:$a≤2-\frac{3}{e-1}$.④
综合①④可知,当$a∈({-∞,2-\frac{3}{e-1}}]$时,对任意给定的x0∈(0,e],
在(0,e]上总存在两个不同的xi(i=1,2),
使f(xi)=g(x0)成立.
hebishuai1994
2012-01-14
知道答主
回答量:4
采纳率:0%
帮助的人:3.3万
展开全部
苦逼的高三党,你苍南的吧。我们试卷是一样的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
依星蓝颖
2012-01-21
知道答主
回答量:27
采纳率:0%
帮助的人:13.4万
展开全部
nnn,。
。。。。。。。。。。。筹备处街道办建设hndnnsnnsn是nmdm没没jmcn出你vvn女吃
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式