
1个回答
展开全部
选项A正确!
解析:由题意,原不等式可化为:
x≤(k^4 +4)/(1+k²) (*)
因为(k^4 +4)/(1+k²)
=(k^4 -1+5)/(1+k²)
=k²-1 +5/(1+k²)
=k²+1 +5/(1+k²) -2
所以:对于任意实数k,由均值不等式可得:
(k^4 +4)/(1+k²)≥2√[(k²+1)×5/(k²+1)] -2=2√5 -2 (当且仅当k²+1=5/(k²+1)即k²=√5 -1时取等号)
这就是说(k^4 +4)/(1+k²)有最小值2√5 -2
所以可知:x≤2√5 -2 恒成立
即解集{ x | x≤2√5 -2} ⊆集合M
因为2√5 -2>2,所以:
可知2∈M,0∈M
解析:由题意,原不等式可化为:
x≤(k^4 +4)/(1+k²) (*)
因为(k^4 +4)/(1+k²)
=(k^4 -1+5)/(1+k²)
=k²-1 +5/(1+k²)
=k²+1 +5/(1+k²) -2
所以:对于任意实数k,由均值不等式可得:
(k^4 +4)/(1+k²)≥2√[(k²+1)×5/(k²+1)] -2=2√5 -2 (当且仅当k²+1=5/(k²+1)即k²=√5 -1时取等号)
这就是说(k^4 +4)/(1+k²)有最小值2√5 -2
所以可知:x≤2√5 -2 恒成立
即解集{ x | x≤2√5 -2} ⊆集合M
因为2√5 -2>2,所以:
可知2∈M,0∈M

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询