已知复数z满足2(z+z的共轭复数)=z*z的共轭复数+3,求

1,复数z在复平面上对应的点所表示的曲线方程2,丨z丨的最大值与最小值... 1,复数z在复平面上对应的点所表示的曲线方程
2,丨z丨的最大值与最小值
展开
101022220101
2012-01-14
知道答主
回答量:15
采纳率:0%
帮助的人:21.7万
展开全部
1,
设z=x+yi,则复数z对应的点为(x,y),z的共轭复数=x-yi,
2(z+z的共轭复数)=z*z的共轭复数+3
即为2(x+yi+x-yi)=(x+yi)(x-yi)+3
即4x=x^2+y^2+3
即(x-2)^2+y^2=1
∴复数z在复平面上对应的点所表示的曲线方程为(x-2)^2+y^2=1

2,
丨z丨^2=x^2+y^2=4x-3,
由第一问知x∈[1,3]
∴丨z丨^2∈[1,9]即丨z丨∈[1,3]
∴丨z丨的最大值与最小值分别为3和1

P.S.也可以画图做,复数z在复平面上对应的点所表示的曲线为圆心为(2,0),半径为1的圆,
圆上一点到原点O的距离为丨z丨
可以看出(1,0)到O的距离最短,为1;(3,0)到O的距离最长,为3
∴丨z丨的最大值与最小值分别为3和1
sunskyprince
2012-01-14 · TA获得超过458个赞
知道答主
回答量:70
采纳率:0%
帮助的人:57万
展开全部
设Z=A +jB,则Z的共轭为A-jB。
2(z+z的共轭复数)=4A
z*z的共轭复数+3=A^2+B^2+3
复数z在复平面上对应的点所表示的曲线方程为(A-2)^2+B^2=1,为圆心在(2,0)半径为1的圆
由图像性质很容易得出:丨z丨的最大值为3,最小值为1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式