2个回答
展开全部
2xydx +(x^2-1)dy =0
∫ -2x/(x^2-1) dx =∫ dy/y
-ln|x^2-1| = ln|y|+ C
y(0)=1
=>C=0
-ln|x^2-1| = ln|y|
y = 1/(x^2-1)
∫(0->1/2) y(x) dx
=∫(0->1/2) dx/(x^2-1)
=(1/2)∫(0->1/2) [1/(x-1) -1/(x+1) ]dx
=(1/2)[ln|(x-1)/(x+1)|]|(0->1/2)
=(1/2) [ ln(1/3) ]
ans : C
=-(1/2)ln3
∫ -2x/(x^2-1) dx =∫ dy/y
-ln|x^2-1| = ln|y|+ C
y(0)=1
=>C=0
-ln|x^2-1| = ln|y|
y = 1/(x^2-1)
∫(0->1/2) y(x) dx
=∫(0->1/2) dx/(x^2-1)
=(1/2)∫(0->1/2) [1/(x-1) -1/(x+1) ]dx
=(1/2)[ln|(x-1)/(x+1)|]|(0->1/2)
=(1/2) [ ln(1/3) ]
ans : C
=-(1/2)ln3
追问
为啥绝对值没了
答案里的绝对值没了
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询