什么是牛顿——莱布尼兹公式?
4个回答
展开全部
牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:
若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)
其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。
若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)
其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。
参考资料: http://baike.baidu.com/view/409739.htm
展开全部
求定积分的公式。即
从a到b,f(x)的定积分
就等于F(b)-F(a)
这里F(x)为f(x)的原函数
从a到b,f(x)的定积分
就等于F(b)-F(a)
这里F(x)为f(x)的原函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
牛顿-莱布尼茨公式,又称为微积分基本定理,其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。从几何上看,它在切线和面积两个看似很不相关的概念之间建立起了联系。
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且 b(上限)∫a(下限)f(x)dx=F(b)-F(a) 这即为牛顿—莱布尼茨公式。
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且 b(上限)∫a(下限)f(x)dx=F(b)-F(a) 这即为牛顿—莱布尼茨公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询