2个回答
展开全部
解:由于一般项
u[n]=sin(nπ/6)
=[2sin(π/12)sin(nπ/6)]/[2sin(π/12)]
=[cos((2n-1)π/12)-cos((2n+1)π/12)]
/[2sin(π/12)],
从而部分和
s[n]
=[cos(π/12)-cos(3π/12)
+cos(3π/12)-cos(5π/12)
+cos(5π/12)-cos(7π/12)
+… …
+cos((2n-1)π/12)-cos((2n+1)π/12)]
/[2sin(π/12)]
=[cos(π/12)-cos((2n+1)π/12)]/[2sin(π/12)],
因为当n→∞时,cos((2n+1)π/12)的极限不存在,所以s[n]的极限不存在,所以级数
Σsin(nπ/6)发散.
u[n]=sin(nπ/6)
=[2sin(π/12)sin(nπ/6)]/[2sin(π/12)]
=[cos((2n-1)π/12)-cos((2n+1)π/12)]
/[2sin(π/12)],
从而部分和
s[n]
=[cos(π/12)-cos(3π/12)
+cos(3π/12)-cos(5π/12)
+cos(5π/12)-cos(7π/12)
+… …
+cos((2n-1)π/12)-cos((2n+1)π/12)]
/[2sin(π/12)]
=[cos(π/12)-cos((2n+1)π/12)]/[2sin(π/12)],
因为当n→∞时,cos((2n+1)π/12)的极限不存在,所以s[n]的极限不存在,所以级数
Σsin(nπ/6)发散.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询