展开全部
cosx=3/5 =>sinx=4/5
[1+√2cos(2x-π/4)]/sin(x+π/2)
=[1+√2cos(2x-π/4)]/cosx
=[1+(cos2x+sin2x) ]/cosx
={ 1 + [2(cosx)^2 -1]+2sinx.cosx } / cosx
= [2(cosx)^2 +2sinx.cosx ] / cosx
= 2cosx +2sinx
= 2(3/5) +2(4/5)
=(6+8)/5
=14/5
[1+√2cos(2x-π/4)]/sin(x+π/2)
=[1+√2cos(2x-π/4)]/cosx
=[1+(cos2x+sin2x) ]/cosx
={ 1 + [2(cosx)^2 -1]+2sinx.cosx } / cosx
= [2(cosx)^2 +2sinx.cosx ] / cosx
= 2cosx +2sinx
= 2(3/5) +2(4/5)
=(6+8)/5
=14/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询