在△ABC中,∠A为90°,AB=AC,点D在线段BC上,∠EDB=二分之一∠C,BE⊥DE,垂足为E,DE与AB相较于点F.求

求BE与FD的数量关系,,并证明..... 求BE与FD的数量关系,,并证明
. .
展开
WY070135
2012-01-15 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2444
采纳率:100%
帮助的人:1720万
展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
尐珈_
2012-01-15
知道答主
回答量:18
采纳率:0%
帮助的人:8.2万
展开全部
图呢。
追问
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式