2个回答
展开全部
let
u=π/2-x
du=-dx
x=0, u=π/2
x=π/2, u=0
I
=∫(0->π/2) (sinx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx
=∫(π/2->0) { (cosu)^2016/ [(sinu)^2016 +(cosu)^2016 ] } [-du]
=∫(0->π/2) (cosx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx
2I
=∫(0->π/2) (sinx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx +
∫(0->π/2) (cosx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx
=∫(0->π/2) dx
=π/2
I =π/4
ie
∫(0->π/2) (sinx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx =π/4
u=π/2-x
du=-dx
x=0, u=π/2
x=π/2, u=0
I
=∫(0->π/2) (sinx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx
=∫(π/2->0) { (cosu)^2016/ [(sinu)^2016 +(cosu)^2016 ] } [-du]
=∫(0->π/2) (cosx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx
2I
=∫(0->π/2) (sinx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx +
∫(0->π/2) (cosx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx
=∫(0->π/2) dx
=π/2
I =π/4
ie
∫(0->π/2) (sinx)^2016/ [(sinx)^2016 +(cosx)^2016 ] dx =π/4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询