1个回答
展开全部
21.(1)F(0,p/2),
AB的斜率为tan45°=1,AB的方程为y=x+p/2,
代入x^2=2py得x^2-2px-p^2=0,
△=4p^2+4p^2=8p^2,
设A(x1,y1),B(x2,y2),则|AB|=|x1-x2|√2=√(2△)=4p=4,p=1,
所以抛物线方程为x^2=2y.
(2)y'=x,
l:y=kx+1/2,代入x^2=2y得x^2-2kx-1=0,①
(x-k)^2=k^2+1
x1+x2=2k,x1x2=-1,
取x2=k-√(k^2+1),
1+x2^2=2kx2+2=2k^2+2-2k√(k^2+1)
过A的切线m的方程为y-y1=x1(x-x1),即y=x1x-(1/2)x1^2,②
直线BH⊥m,方程为y-y2=x2(x-x2),即y=x2x-(1/2)x2^2,③
②-③,(x1-x2)x-(1/2)(x1^2-x2^2)=0,
xH=(x1+x2)/2=k
|BH|=|x2-k|√(1+x2^2),
w=(1/2)BH^2=(K^2+1)[k^2+1-k√(k^2+1)],
设u=k^2,则w=(u+1)[u+1-√(u^2+u)},
=(u+1)^2-(u+1)√(u^2+u),
w'=2u+2-√(u^2+u)-(u+1)(2u+1)/[2√(u^2+u)]=0,
两边都乘以2√(u^2+u),得2(2u+2)√(u^2+u)-2(u^2+u)-(2u^2+3u+1)=0
整理得4(u+1)√(u^2+u)=(u+1)(4u+1),
两边除以(u+1)后平方得16(u^2+u)=16u^2+8u+1,
8u=1,u=1/8,
此时w取最小值9/8*(9/8-3/8)=27/32,
BH^2最小值为27/16,
|BH|最小值为3√3/4.
AB的斜率为tan45°=1,AB的方程为y=x+p/2,
代入x^2=2py得x^2-2px-p^2=0,
△=4p^2+4p^2=8p^2,
设A(x1,y1),B(x2,y2),则|AB|=|x1-x2|√2=√(2△)=4p=4,p=1,
所以抛物线方程为x^2=2y.
(2)y'=x,
l:y=kx+1/2,代入x^2=2y得x^2-2kx-1=0,①
(x-k)^2=k^2+1
x1+x2=2k,x1x2=-1,
取x2=k-√(k^2+1),
1+x2^2=2kx2+2=2k^2+2-2k√(k^2+1)
过A的切线m的方程为y-y1=x1(x-x1),即y=x1x-(1/2)x1^2,②
直线BH⊥m,方程为y-y2=x2(x-x2),即y=x2x-(1/2)x2^2,③
②-③,(x1-x2)x-(1/2)(x1^2-x2^2)=0,
xH=(x1+x2)/2=k
|BH|=|x2-k|√(1+x2^2),
w=(1/2)BH^2=(K^2+1)[k^2+1-k√(k^2+1)],
设u=k^2,则w=(u+1)[u+1-√(u^2+u)},
=(u+1)^2-(u+1)√(u^2+u),
w'=2u+2-√(u^2+u)-(u+1)(2u+1)/[2√(u^2+u)]=0,
两边都乘以2√(u^2+u),得2(2u+2)√(u^2+u)-2(u^2+u)-(2u^2+3u+1)=0
整理得4(u+1)√(u^2+u)=(u+1)(4u+1),
两边除以(u+1)后平方得16(u^2+u)=16u^2+8u+1,
8u=1,u=1/8,
此时w取最小值9/8*(9/8-3/8)=27/32,
BH^2最小值为27/16,
|BH|最小值为3√3/4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询