关于极限的问题
lim[(√(n^2+an)-(bn+1)]=b,则a的值是多少?已知p和q是两个不相等的正整数,且q>=2,则lim[(1+1/n)^p-1]/[(1+1/n)^q-1...
lim[(√(n^2+an)-(bn+1)]=b,则a 的值是多少?
已知p和q是两个不相等的正整数,且q>=2,则lim[(1+1/n)^p-1]/[(1+1/n)^q-1]=?
最好要过程。。 展开
已知p和q是两个不相等的正整数,且q>=2,则lim[(1+1/n)^p-1]/[(1+1/n)^q-1]=?
最好要过程。。 展开
1个回答
展开全部
1、解:显然b=1,否则极限为∞。则有
lim[(√(n^2+an)-(n+1)]=1
于是lim[(√(n^2+an)-n]=2=lim[(√(n^2+an)-n][(√(n^2+an)+n]/[(√(n^2+an)+n]
=lim an/[(√(n^2+an)+n]=lim a/[(√(1+a/n)+1]=a/2
故a=4
2、应为求n趋于∞时的极限值。因q>=2,p>=1且p≠q,故为“0/0”型,罗比达法则。
lim [(1+1/n)^p-1]/[(1+1/n)^q-1]=lim p*(1+1/n)^(p-1)*(-1/n^2)/[q*(1+1/n)^(q-1)*(-1/n^2)]
=lim p*(1+1/n)^(p-1)/[q*(1+1/n)^(q-1)]
若p=1,则原式=lim 1/[q*(1+1/n)^(q-1)]=1/q
若p>=2且p≠q,则原式=lim p*(1+1/n)^(p-1)/[q*(1+1/n)^(q-1)]=p/q
lim[(√(n^2+an)-(n+1)]=1
于是lim[(√(n^2+an)-n]=2=lim[(√(n^2+an)-n][(√(n^2+an)+n]/[(√(n^2+an)+n]
=lim an/[(√(n^2+an)+n]=lim a/[(√(1+a/n)+1]=a/2
故a=4
2、应为求n趋于∞时的极限值。因q>=2,p>=1且p≠q,故为“0/0”型,罗比达法则。
lim [(1+1/n)^p-1]/[(1+1/n)^q-1]=lim p*(1+1/n)^(p-1)*(-1/n^2)/[q*(1+1/n)^(q-1)*(-1/n^2)]
=lim p*(1+1/n)^(p-1)/[q*(1+1/n)^(q-1)]
若p=1,则原式=lim 1/[q*(1+1/n)^(q-1)]=1/q
若p>=2且p≠q,则原式=lim p*(1+1/n)^(p-1)/[q*(1+1/n)^(q-1)]=p/q
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询