设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(3)=0,证明:在(0,3)内至少存在 80

一点ξ,使得f'(ξ)=-f(ξ)/ξ... 一点ξ,使得f'(ξ)=-f(ξ)/ξ 展开
 我来答
热点那些事儿
高粉答主

2021-10-16 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:194万
展开全部

因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且亩亩在[0,2]上必有最大值M和最小值m,于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,故:m≤f(0)+f(1)+f(2) 3 ≤M。

介值定理知,至少存在一点c∈[0,2],使得: f(c)=f(0)+f(1)+f(2) 3 =1,又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在戚耐腔(c,3)内可导,满足罗尔定理的条件,故:必存在ξ∈(c,3)?(0,3),使f′(ξ)=0。

简介

介值定理,又名中间值定理,是闭区间上连续函数的性质之一高衫,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。

犹秀逸0Fy
2018-12-28 · TA获得超过1524个赞
知道大有可为答主
回答量:1900
采纳率:0%
帮助的人:244万
展开全部
因为f(x)在[0,3]上连迹春雀续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和森高最小值m,于是:m≤姿早f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,故:m≤f(0)+f(1)+f(2) 3 ≤M,由介值定理知,至少存在一点c∈[0,2],使得: f(c)=f(0)+f(1)+f(2) 3 =1,又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,故:必存在ξ∈(c,3)?(0,3),使f′(ξ)=0.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式