2个回答
展开全部
x^n
=x^(n-2).( x^2 -1) + x^(n-2)
=x^(n-2).( x^2 -1) + x^(n-4).(x^2-1) +x^(n-4)
....
...
n 是 偶数
x^n =x^(n-2).( x^2 -1) + x^(n-4).(x^2-1) +....+ (x^2-1) +1
x^n/( x^2 -1)
= x^(n-2)+x^(n-4)+....+1 + 1/(x^2-1)
= x^(n-2)+x^(n-4)+....+1 + (1/2) [ 1/(x-1) -1/(x+1) ]
n 是奇数
x^n =x^(n-2).( x^2 -1) + x^(n-4).(x^2-1) +....+ x(x^2-1) +x
x^n/(x^2-1)
=x^(n-2)+x^(n-4)+....+x + x/(x^2-1)
=x^(n-2)+x^(n-4)+....+x + (1/2) [ 1/(x-1) + 1/(x+1) ]
=x^(n-2).( x^2 -1) + x^(n-2)
=x^(n-2).( x^2 -1) + x^(n-4).(x^2-1) +x^(n-4)
....
...
n 是 偶数
x^n =x^(n-2).( x^2 -1) + x^(n-4).(x^2-1) +....+ (x^2-1) +1
x^n/( x^2 -1)
= x^(n-2)+x^(n-4)+....+1 + 1/(x^2-1)
= x^(n-2)+x^(n-4)+....+1 + (1/2) [ 1/(x-1) -1/(x+1) ]
n 是奇数
x^n =x^(n-2).( x^2 -1) + x^(n-4).(x^2-1) +....+ x(x^2-1) +x
x^n/(x^2-1)
=x^(n-2)+x^(n-4)+....+x + x/(x^2-1)
=x^(n-2)+x^(n-4)+....+x + (1/2) [ 1/(x-1) + 1/(x+1) ]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询