展开全部
f(2)=1/2 , f'(2)=0, ∫(0->2) f(x) dx=1
∫(0->2) x^2.f''(x) dx
=∫(0->2) x^2 df'(x)
=[x^2.f'(x)]|(0->2) -2∫(0->2) xf'(x) dx
=4f'(2) - 2∫(0->2) xdf(x)
=0 -2[xf(x)]|(0->2) +2∫(0->2) f(x) dx
=-4f(2) +2(1)
=-2 +2
=0
∫(0->2) x^2.f''(x) dx
=∫(0->2) x^2 df'(x)
=[x^2.f'(x)]|(0->2) -2∫(0->2) xf'(x) dx
=4f'(2) - 2∫(0->2) xdf(x)
=0 -2[xf(x)]|(0->2) +2∫(0->2) f(x) dx
=-4f(2) +2(1)
=-2 +2
=0
追问
昂,不好意思,看不懂……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询