已知:抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上;

已知:抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x2-10x+... 已知:抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求此抛物线的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE.当△CEF的面积最大时,求点E的坐标,并求此时面积的最大值;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点Q,点D的坐标为(-3,0).问:是否存在这样的直线l,使得△ODQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由
展开
宇宙不安协会W
2012-01-15 · TA获得超过431个赞
知道答主
回答量:98
采纳率:0%
帮助的人:76.1万
展开全部
解:(1)解方程x2-14x+48=0得x1=6,x2=8,
由题意得
A(-6,0),C(0,8),B(2,0)
∵点C(0,8)在抛物线y=ax2+bx+c的图象上,∴c=8,
将A(-6,0)、B(2,0)代入表达式,得 {0=36a-6b+80=4a+2b+8,
 解得 {a=-23b=-83.
∴所求抛物线的表达式为y=- 23x2- 83x+8; 
(2)依题意,AE=m,则BE=8-m,
∵OA=6,OC=8,∴AC=10.
∵EF∥AC,
∴△BEF∽△BAC,
∴ EFAC= BEAB即 EF10= 8-m8,
∴EF= 40-5m4.
过点F作FG⊥AB,垂足为G,
则sin∠FEG=sin∠CAB= 45,
∴ FGEF= 45,
∴FG= 45• 40-5m4=8-m,
∴S=S△BCE-S△BFE= 12(8-m)×8- 12(8-m)(8-m)
= 12(8-m)(8-8+m)= 12(8-m)m=- 12m2+4m. 
自变量m的取值范围是0<m<8;  
(3)存在.
理由:∵S=- 12m2+4m=- 12(m-4)2+8且- 12<0,
∴当m=4时,S有最大值,S最大值=8.  
∵m=4,∴点E的坐标为(-2,0),
∴△BCE为等腰三角形.
张旭辉1996
2012-01-23
知道答主
回答量:28
采纳率:0%
帮助的人:4.6万
展开全部
A-6,0 B2,0 C0,8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
杨顺30
2012-01-18
知道答主
回答量:36
采纳率:0%
帮助的人:13.7万
展开全部
他的是对的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
断甲留念
2012-01-18
知道答主
回答量:1
采纳率:0%
帮助的人:1658
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式