高等数学无穷级数问题 30

这个是怎么得来的呢... 这个是怎么得来的呢 展开
 我来答
百度网友8362f66
2019-06-15 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3285万
展开全部
详细过程是,∵[x^(n+1)]'=(n+1)x^n,∴[∑x^(n+1)/(n+1)]'=∑x^n。
又,∑x^n是首项为1、公比为x的等比级数,由其求和公式,∴∑x^n=[1-x^(n+1)]/(1-x)。
而,丨q丨=丨x丨<1,lim(n→∞)x^(n+1)=0,。∴当n=0,1,2,…,∞时,∑x^n=1/(1-x)。
供参考。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
森的小2169
2019-06-15 · TA获得超过600个赞
知道小有建树答主
回答量:1421
采纳率:82%
帮助的人:126万
展开全部
8. 由积分域D的对称性,得 ∫∫<D>(x^3+3x^2+5x^7cosy+4y^2)dxdy
= ∫∫<D>(3x^2+4y^2)dxdy
= ∫<0,2π>dt∫<0,a>[3(rcost)^2+4(rsint)^2]rdr
= ∫<0,2π>dt∫<0,a>[3r^3+r^3(sint)^2]dr
= (a^4/4)∫<0,2π>[3+(sint)^2]dt
= (a^4/4)∫<0,2π>[7/2+(1/2)cos2t]dt
= (a^4/4)[7t/2+(1/4)sin2t]<0,2π> = 7πa^4/4.
9. 令 x=a+rcost, y=b+rsint, 则
∫∫<D>(x+y)dxdy =∫<0,2π>dt∫<0,R>(a+b+rcost+rsint)rdr
=∫<0,2π>dt[(a+b)r^2/2+(cost+sint)r^3/3]<0,R>
=∫<0,2π>[(a+b)R^2/2+(cost+sint)R^3/3]dt
= [t(a+b)R^2/2+(sint-cost)R^3/3]<0,2π> = π(a+b)R^2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2019-06-16 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7769万
展开全部
∑<n=0,∞> x^n = 1+x+x^2+x^3+ .......
是首项为 1, 公比为 x 的等比级数,根据中学等比数列求和公式,
当 |x| < 1 时, 所有项之和为
∑<n=0,∞> x^n = 1+x+x^2+x^3+ ....... = 1/(1-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善童彤0fo
2019-06-16 · TA获得超过2862个赞
知道大有可为答主
回答量:2968
采纳率:74%
帮助的人:602万
展开全部
可以展开成1+x+x²……x^n,这里的n趋于无穷大,它是几何级数,它的的通项公式为limsn=1/1-q
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
濯楚云PJ
2019-06-15 · TA获得超过3931个赞
知道大有可为答主
回答量:6939
采纳率:84%
帮助的人:438万
展开全部
解:
令:F(x,y,z)=z³-2xz+y=0
F'x=-2z
F'y=1
F'z=3z²-2x
根据隐函数求偏导公式:
∂z/∂x
= - F'x/F'z
= 2z/(3z²-2x)
∂z/∂y
= - F'y/F'z
= -1/(3z²-2x)
= - (3z²-2x)^(-1)
∂²z/∂x²
={2(∂z/∂x)(3z²-2x)-2z·[6z(∂z/∂x)-2]}/(3z²-2x)²
=[4z-12z²(2z/(3z²-2x))+4z]/(3z²-2x)²
∂²z/∂y²
=6z·[-1/(3z²-2x)]/(3z²-2x)²
=-6z/(3z²-2x)³
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式