【高中数学】已知函数f(x)=e^x-kx,x属于R, 设函数F(x)=f(x)+f(-x),

求证:F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数。如能解答,感激不尽啊!... 求证:F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数。如能解答,感激不尽啊! 展开
蟾宫听雪
2012-01-16
知道答主
回答量:19
采纳率:0%
帮助的人:12.8万
展开全部
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)

F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式