圈出来的第二题怎么做,求详细过程
1个回答
展开全部
2.
(1)
y=√(1+2x)
y'={1/[2√(1+2x)] }.(2)
= 1/√(1+2x)
(2)
y=xtan(2x+1)
y'=tan(2x+1) + x.[sec(2x+1)]^2 .(2)
= tan(2x+1) + 2x.[sec(2x+1)]^2
(3)
y= sin[x/(1+x)]
y' = {cos[x/(1+x)]} . [(1+x) - x ] /(1+x)^2
= [1/(1+x)^2].cos[x/(1+x)]
(4)
y=x^(2/3)+ [x/x^(2/3)] + ln(2x+1)
=x^(2/3)+ x^(1/3) + ln(2x+1)
y'=(2/3)x^(-1/3) +(1/3)x^(-2/3) + 2/(2x+1)
(1)
y=√(1+2x)
y'={1/[2√(1+2x)] }.(2)
= 1/√(1+2x)
(2)
y=xtan(2x+1)
y'=tan(2x+1) + x.[sec(2x+1)]^2 .(2)
= tan(2x+1) + 2x.[sec(2x+1)]^2
(3)
y= sin[x/(1+x)]
y' = {cos[x/(1+x)]} . [(1+x) - x ] /(1+x)^2
= [1/(1+x)^2].cos[x/(1+x)]
(4)
y=x^(2/3)+ [x/x^(2/3)] + ln(2x+1)
=x^(2/3)+ x^(1/3) + ln(2x+1)
y'=(2/3)x^(-1/3) +(1/3)x^(-2/3) + 2/(2x+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询