2个回答
展开全部
y=√[x(x+1)/(1+x²)],x>0
复合函数求导:(1)开方,(2)分式,
y'=(1/2)/√[x(x+1)/(1+x²)]×[(2x+1)(1+x²)-x(x+1)×2x]/(1+x²)²
=(1/2)/√[x(x+1)/(1+x²)]×[2x+2x³+1+x²-2x³-2x²]/(1+x²)²
=(1/2)/√[x(x+1)/(1+x²)]×[2x+1-x²]/(1+x²)²
=(1+2x-x²)/2√[x(x+1)(1+x²)³]
复合函数求导:(1)开方,(2)分式,
y'=(1/2)/√[x(x+1)/(1+x²)]×[(2x+1)(1+x²)-x(x+1)×2x]/(1+x²)²
=(1/2)/√[x(x+1)/(1+x²)]×[2x+2x³+1+x²-2x³-2x²]/(1+x²)²
=(1/2)/√[x(x+1)/(1+x²)]×[2x+1-x²]/(1+x²)²
=(1+2x-x²)/2√[x(x+1)(1+x²)³]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询