二元函数极限问题
1个回答
展开全部
二元函数和一元函数的极限意义类似.回顾一下一元函数极限的定义,对任意E,总存在δ,当0<|x-x0|<δ时,|f(x)-A|<E.
绝对值表示的是距离,|f(x)-A|表示f(x)与A之间的距离,|x-x0|是x与x0的距离.对任意E,总存在δ,说得通俗一点,就是我想让f(x)与A有多近,它就能有多近,只要x与x0的距离小于δ就能达到我的要求.
二元函数也同理,P落在P0的某个去心邻域,也就是P落在以P0为圆心δ为半径的圆内时,就可以让函数值与A充分接近,那么A就是极限.
绝对值表示的是距离,|f(x)-A|表示f(x)与A之间的距离,|x-x0|是x与x0的距离.对任意E,总存在δ,说得通俗一点,就是我想让f(x)与A有多近,它就能有多近,只要x与x0的距离小于δ就能达到我的要求.
二元函数也同理,P落在P0的某个去心邻域,也就是P落在以P0为圆心δ为半径的圆内时,就可以让函数值与A充分接近,那么A就是极限.
追问
谢谢,但是边界点领域内并不是所有点都在定义区间内,怎么能去谈他的极限呢,因为这样不能保证他所有路径下的极限都一样
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询