3个回答
展开全部
18.∫xarctan∨xdx
令x=tan²θ,θ∈[0,π/2)
则原式=2∫θtan³θsec²θdθ
=∫θ(2sec²θ-2)secθdsecθ
=∫θ(2sec³θ-2secθ)dsecθ
=∫θ d[1/2 (secθ)^4-sec²θ]
=1/2 θ(secθ)^4 -θsec²θ-∫[1/2(sec²θ)²-sec²θ]dθ
=1/2 θ(secθ)^4 -θsec²θ-∫(1/2sec²θ-1)dtanθ
=1/2 θ(secθ)^4 -θsec²θ-1/2 ∫( tan²θ-1)dtanθ
=1/2 θ(1+tan²θ)² -θ(1+tan²θ)-1/2(1/3 tan³θ-tanθ)+C
=1/2 θ(tan²θ)²-1/2 θ-1/6tan³θ+1/2tanθ+C
=1/2 [x²arctan∨x -arctan∨x -1/3 (∨x)³+∨x] +C
2.f(x)=[sinx/x]'=(xcosx-sinx)/x²
∫xf'(x)dx
=∫xdf(x)
=xf(x) -∫f(x)dx
=(xcosx-sinx)/x -sinx/x +C
=cosx-2sinx/x +C
令x=tan²θ,θ∈[0,π/2)
则原式=2∫θtan³θsec²θdθ
=∫θ(2sec²θ-2)secθdsecθ
=∫θ(2sec³θ-2secθ)dsecθ
=∫θ d[1/2 (secθ)^4-sec²θ]
=1/2 θ(secθ)^4 -θsec²θ-∫[1/2(sec²θ)²-sec²θ]dθ
=1/2 θ(secθ)^4 -θsec²θ-∫(1/2sec²θ-1)dtanθ
=1/2 θ(secθ)^4 -θsec²θ-1/2 ∫( tan²θ-1)dtanθ
=1/2 θ(1+tan²θ)² -θ(1+tan²θ)-1/2(1/3 tan³θ-tanθ)+C
=1/2 θ(tan²θ)²-1/2 θ-1/6tan³θ+1/2tanθ+C
=1/2 [x²arctan∨x -arctan∨x -1/3 (∨x)³+∨x] +C
2.f(x)=[sinx/x]'=(xcosx-sinx)/x²
∫xf'(x)dx
=∫xdf(x)
=xf(x) -∫f(x)dx
=(xcosx-sinx)/x -sinx/x +C
=cosx-2sinx/x +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询