地震噪声特征分析及去噪技术
2020-01-18 · 技术研发知识服务融合发展。
(一)地震资料噪声类型特征及传播规律
渤海湾地区地表条件非农林地区植被茂盛,工业地区机械设备繁多,输电线路林立,公路干线较多;滩涂地区淤泥遍布,养殖业发达;浅海油区钻井平台较多。复杂的地表条件,使得采集的资料广泛发育各种类型的干扰波,严重影响后续的提高分辨率等工作及最终偏移成像,如何有效去除不同类型的噪声是提高资料品质的关键。
1.多次波
当地震波在地下传播时,若地下存在强反射界面,同时地面与空气的分界面波阻抗差很明显,是一个良好的反射界面,反射波可能在地下强反射界面及地表面之间震荡,从而形成多次波(图4-34)。多次波一般周期性较强,地震响应总和一次反射波相关,但其物理特性又和一次反射波不同。多次波的识别和压制正是利用了这一特性。
图4-34 长程多次波在单炮上、道集上、速度谱上的表现
2.面波
面波是地震勘探中常见的噪声,按传播路径可分为三种:分布在自由界面附近的瑞雷(Rayleigh)面波;在表面介质和覆盖层(通常指海水和海底)之间存在的SH型的勒夫(Love)面波;以及在深部两个均匀弹性层之间存在的类似瑞雷面波型的史通利(Stoneley)面波。
面波干扰特点小结:①能量、频率等属性随激发接收因素的变化而变化;②主频一般较低;③一般具有一定的相关性;④能量一般随着时间的推移和炮检距的增加而衰减。
3.空腔鸣震
由于潜水面位置抽取卤水晒盐,造成空洞问题,激发岩层孔隙度大,形成空腔鸣震干扰现象,其严重干扰浅、中层资料成像,且影响能量向下传播,造成深层反射信号能量弱。
空腔鸣震具有周期性和线性的特点。分布没有规律,与折射波、直达波、有效反射波混杂(图4-35),角度不同,速度不同。空腔鸣震模拟表明,在野外有空穴的地方施工时,震源最好在空穴之下激发,以得到质量较高的单炮记录。
4.大钻干扰
在油区进行地震采集时,钻头钻进时产生的大钻噪声必将与有效波发生干涉。大钻噪声传播类似于单程绕射波时距曲线,其极小点在钻头正上方。
图4-35 空腔鸣震干扰单炮记录
大钻噪声的传播特征如下:
(1)在不同域中其时距关系表现不同,在共炮点道集上,表现为双曲线特征(图4-36),排列距钻机越远,相邻道间的旅行时间越长,视速度在不同排列上有所不同,变化较明显;
(2)在共中心点道集上,由于噪声到达各接收道的时间不同,大钻干扰噪声在CMP域表现为不规则噪声,如图4-37所示;
(3)在共检波点道集,由于各道接收干扰噪声的时间不同,大钻干扰噪声规律性不强。
图4-36 大钻噪声在单炮记录中的显示
图4-37 大钻噪声在CMP道集中的显示
5.50Hz工业干扰
在野外地震资料采集过程中,如果地震测线上方有输电线路通过,相应的地震记录中就存在50Hz左右的强单频干扰波。该干扰波在地震记录整个或部分时间段具有很强能量,严重地影响资料信噪比。在渤海湾陆地区域村镇、厂矿较多,用电设备密集,造成高压线路广泛分布,使得所采集地震资料单炮记录中存在较为严重的50Hz工业干扰(图4-38),特别是工业发达地区,严重影响地震资料信噪比。
50Hz工业干扰特征:a.频率在50Hz左右;b.干扰能量贯穿接收道整个采集时间段,深层部分在能量补偿后变得更强,几乎将有效反射信号淹没;c.在单炮记录上分布广泛但无规律,但固定分布在靠近高压线的检波点上。
图4-38 具有严重的50Hz工业干扰的单炮
(二)叠前去噪方法的配套技术
1.多次波压制技术
目前地震资料去噪的难点是压制多次波,特别是层间多次波。目前来说,多次波压制属于世界性难题。其方法基本可分为两大类:一类是基于有效波和多次波之间差异的滤波方法(表4-9),另一类是基于波动理论的方法(表4-10)。
表4-9 基于有效波和多次波之间差异的多次波压制方法
表4-10 基于波动方程多次波压制方法
1)常规多次波压制方法:Radon变换法及改进
Radon变换一般包含三个步骤:Radon正变换、动校正量(或速度)切除和Radon反变换。消除多次波的方法是“减去法”。
用一次波校正后变换到Radon域,将一次波切出来,多次波的近道由于接近水平,能量分布与一次波相近,因而压制不理想;用多次波校正后变换到Radon域,将多次波切除,多次波的远道存在拉伸畸变,与近道不在同一直线上,因而远道压制不理想。为此,提出“两步法”压制多次波:首先用多次波作动校正,对多次波进行切除,为保护有效波,对多次波切除应尽可能小,此时多次波能量大部分被压制,只剩下远道的能量(图4-39中);然后用一次波校正,转换到Radon域后把一次波能量切出来,同样为保护有效波,对一次波切出应尽可能大(注:这时只剩下远道的干扰波,也可以对τ-p域内远离p0道的多次波进行动校正量自适应切除)。两步之后,多次被压制得很干净。但由于原始数据一次波和多次波的离散性,转换到Radon域能量发散,切除时难免对一次波有轻微损伤(图4-39右)。
从图4-39可以看出,该方法压制多次波效果非常理想,多次波基本被压制干净;不足之处就是,在压制多次波的同时难免会损失有效波能量。因此,该方法的适用范围是:如果目标是高精度的构造成像,对振幅的AVO变化特性要求不高,就可以采用该方法,会取得较好的多次波压制效果。
图4-39“两步法”线性Radon变换
2)保幅的多次波压制方法:剔除拟合法
常规压制多次波的方法,诸如Radon变换法,在压制多次波的同时不能保留振幅的AVO效应,也就是说不保幅。剔除拟合法(李庆忠,1995)可以解决这个问题——在压制多次波的同时保留振幅的AVO效应。其基本思路是:先将CDP道集用一次波的速度作动校正,将其拉平。以某t0时刻为准,把横向上各道的振幅值绘出来,如图4-40所示。一次波的AVO振幅是渐变的,可以用一个抛物线型的二次曲线表示为
A=Qx2+P (4-15)
式中,P为正入射纵波的振幅;x为炮检距;Q可称为抛物线曲率。
在图4-40中,多次波表现为在抛物线上的一个多余波形。这些多余波形离开抛物线的误差很大。因此,只要把这些大的误差点剔除,就能得到很少受多次波影响的拟合P值及Q值。所以,先采用最小二乘法拟合出一个P值和Q值,得到一条抛物线。然后计算每一个实际点离开抛物线的距离,得到误差ex。将误差大的点剔除,使它们不能参与下一次拟合。剔除一些道的点之后,可以再次用最小二乘法来拟合新的抛物线,得到P与Q值。剔除道是不固定的,它根据ex误差而定。如此,逐步拟合——剔除——拟合,直到剔除百分比等于15%或20%终止。
图4-41上图是有较强多次波的模型正演模拟记录NMO结果。一次波被拉平,多次波呈弯曲状。剔除拟合之后,结果如图4-41下图,从中可以看出无论是随机干扰,还是规则干扰,都被很好压制,一次波得到明显突显。
那么,这种方法对AVO特性的保留效果如何呢?从图4-42的对比分析可以看出,剔除拟合法在有效压制多次波和随机噪声的同时,保留了振幅AVO特性,为后续AVO研究工作奠定了基础。
2.面波压制技术
由前面对面波干扰的分析可知,面波的频率和速度较低,可以将资料转换到F-K域或F-x域,利用面波和有效波之间的频率和速度差异,将面波分离后,再转换到T-x域,就完成了面波压制。也可根据面波的能量远大于有效波这一特点,用区域异常噪声衰减技术来压制面波。在处理过程中,可采用多种方法结合,循序渐进地逐步压制,最大限度地保护有效信号。图4-43为F-x域相干噪声压制法(简称Fxcns,下同)压制面波前后单炮与剖面对比图。
图4-40 动校正后一次波的AVO振幅曲线
图4-41 含多次波的模型噪声压制前(上)后(下)CMP记录
图4-42 理想状态(上)、加噪声后(中)和剔除拟合后(下)某时刻振幅曲线图
3.空腔鸣震压制技术
渤海湾地区有些工区卤水池分布比较密集,由于抽水晒盐造成潜水面出现空洞现象,浅层鸣震非常严重,影响了中、浅层的成像,针对该干扰,试验了多种方法,包括Fxcns法、炮集域和道集域FK法、反假频法、预测反褶积、地表一致性反褶积方法等,针对这些方法的处理要点、优缺点和效果进行对比。最终确定一套合适的处理流程,这套处理流程对空腔鸣震压制效果理想,有效信号损失较小。
图4-43 原始剖面(上)及区域Fxcns滤波后剖面(下)
表4-11 针对空腔鸣震干扰试验方法及参数表
从图4-44可以看出,用空腔鸣震组合压制技术处理后,叠加剖面上的空腔鸣震干扰得到了很好压制,信噪比得到较大提高。
4.检波点域压制50Hz工业干扰
1)检波点域压制50Hz干扰方法原理
对实际资料分析发现:50Hz干扰源一般是固定的,而野外采集的接收点也是不变的,那么能产生50Hz干扰的干扰源所影响的范围就固定在一定的范围之内。根据这个原理,可以把资料从共炮点域转换到共检波点域,从而把50Hz强单频干扰分选出来进行单独分离。这样既分离出干扰波,又较好地保留有效信号,同时覆盖次数亦保持不变。
2)检波点域压制50Hz干扰效果
从图4-45可以看出,50Hz干扰分离前,剖面几乎被50Hz能量淹没,50Hz干扰分离后,剖面信噪比得到很大提高,成像非常清晰。
图4-44 压制空腔鸣前后叠加剖面对比
图4-45 50Hz干扰分离前(左)、后(右)剖面对比图
5.针对海上线性干扰的线性Radon变换压制方法
东部海上地震资料广泛存在线性干扰,且能量较强,对单炮和剖面的信噪比造成较大影响。由于该线性干扰频率高、倾角大,使得常用的F-K法容易出现假频,滤波效果欠佳。由Radon变换基本原理可知,线性Radon变换可以压制线性干扰。用该方法压制胜海2地震资料中的线性干扰,单炮和叠加剖面都取得了较好的效果,如图4-46所示。
图4-46 利用线性Radon变换压制含线性干扰剖面前(左)、后(右)对比