2个回答
展开全部
(1)
an
= [n(n+1) -1 ]/[n(n+1)]
= 1 - 1/[n(n+1)]
= 1 - [1/n- 1/(n+1) ]
Sn
= a1+a2+...+an
=n - [ 1 - 1/(n+1) ]
1/2+5/6 +11/12+19/20+...+9899/9900
=S99
=99 -[ 1 - 1/100]
=98 + 1/100
=9801/100
(2)
an
= 1/ [ (2n)^2 -1]
=(1/2) [1/(2n-1) - 1/(2n+1) ]
Sn
=a1+a2+...+an
=(1/2) [ 1 - 1/(2n+1) ]
1/(2^2-1) +1/4^2-1)+...+1/(100^2-1)
=S50
=(1/2) [ 1 - 1/(100+1) ]
=(1/2) ( 100/101)
=50/101
an
= [n(n+1) -1 ]/[n(n+1)]
= 1 - 1/[n(n+1)]
= 1 - [1/n- 1/(n+1) ]
Sn
= a1+a2+...+an
=n - [ 1 - 1/(n+1) ]
1/2+5/6 +11/12+19/20+...+9899/9900
=S99
=99 -[ 1 - 1/100]
=98 + 1/100
=9801/100
(2)
an
= 1/ [ (2n)^2 -1]
=(1/2) [1/(2n-1) - 1/(2n+1) ]
Sn
=a1+a2+...+an
=(1/2) [ 1 - 1/(2n+1) ]
1/(2^2-1) +1/4^2-1)+...+1/(100^2-1)
=S50
=(1/2) [ 1 - 1/(100+1) ]
=(1/2) ( 100/101)
=50/101
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
支持一下现形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询