比较(x+1)(x²-x+2)与(x-1)(x²+x+2)的大小
2个回答
展开全部
(x+1)(x²-x+2)
=(x+1)(x²-x+1+1)
=(x+1)(x²-x+1)+(x+1)
=x³+1+x+1
=x³+x+2
(x-1)(x²+x+2)
=(x-1)(x²+x+1+1)
=(x-1)(x²+x+1)+(x-1)
=x³-1+x-1
=x³+x-2
因为:x³+x+2>x³+x-2
所以,(x+1)(x²-x+2)>(x-1)(x²+x+2)
=(x+1)(x²-x+1+1)
=(x+1)(x²-x+1)+(x+1)
=x³+1+x+1
=x³+x+2
(x-1)(x²+x+2)
=(x-1)(x²+x+1+1)
=(x-1)(x²+x+1)+(x-1)
=x³-1+x-1
=x³+x-2
因为:x³+x+2>x³+x-2
所以,(x+1)(x²-x+2)>(x-1)(x²+x+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询