谁能给我一些初一上的一元一次方程应用题?

ydjqwert
2012-01-16 · TA获得超过2.6万个赞
知道大有可为答主
回答量:3777
采纳率:80%
帮助的人:647万
展开全部
列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.
1. 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?
分析:等量关系为:

解:设1990年6月底每10万人中约有x人具有小学文化程度

答:略.
2. 等积变形问题:
“等积变形”是以形状改变而体积不变为前提。常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积。
例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为 内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数 )
分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积
下降的高度就是倒出水的高度
解:设玻璃杯中的水高下降xmm

答:略.
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
分析:列表法。
每人每天 人数 数量
大齿轮 16个 x人 16x
小齿轮 10个 人
等量关系:小齿轮数量的2倍=大齿轮数量的3倍
解:设分别安排x名、 名工人加工大、小齿轮

答:略.
4. 比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?
解:设一份为x,则三个数分别为x,2x,4x
分析:等量关系:三个数的和是84

答:略.
5. 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
等量关系:原两位数+36=对调后新两位数
解:设十位上的数字X,则个位上的数是2x,
10×2x+x=(10x+2x)+36解得x=4,2x=8.
答:略.
6. 工程问题:
 工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。
例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
  解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x12=1,  解这个方程,15+14+x12=1      
12+15+5x=60 5x=33   ∴ x=335=635
  答:略.
7. 行程问题:
  (1)行程问题中的三个基本量及其关系: 路程=速度×时间。
  (2)基本类型有
    ① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
  (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。
  例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
  (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
  (2)两车同时开出,相背而行多少小时后两车相距600公里?
  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。
(1)分析:相遇问题,画图表示为:

等量关系是:慢车走的路程+快车走的路程=480公里。  
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480   
解这个方程,230x=390         
∴ x=11623
答:略.
分析:相背而行,画图表示为:  

等量关系是:两车所走的路程和+480公里=600公里。
  解:设x小时后两车相距600公里,
由题意得,(140+90)x+480=600解这个方程,230x=120         
∴ x=1223
  答:略.
  (3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
  解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600           50x=120       
∴ x=2.4
  答:略.
分析:追及问题,画图表示为:

等量关系为:快车的路程=慢车走的路程+480公里。   
解:设x小时后快车追上慢车。
由题意得,140x=90x+480   
解这个方程,50x=480  ∴ x=9.6
答:略.
分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480
  50x=570  解得, x=11.4   
答:略.
8. 利润赢亏问题
(1)销售问题中常出现的量有:进价、售价、标价、利润等
(2)有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:探究题目中隐含的条件是关键,可直接设出成本为X元
进价 折扣率 标价 优惠价 利润
x元 8折 (1+40%)x元 80%(1+40%)x 15元
等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15
解:设进价为X元,80%X(1+40%)—X=15,X=125
答:略.
9. 储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
例9. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
分析:等量关系:本息和=本金×(1+利率)
解:设半年期的实际利率为x,
250(1+x)=252.7,
x=0.0108
所以年利率为0.0108×2=0.0216
一元一次方程提高测试题
一、综合题(每题6分,共42分)
1.若(3x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a5-a4+a3-a2+a1-a0和a4+a2+a0的值分别为多少?

2.若使方程ax-6=8 有无穷多解,则a应取何值?
3.若x=-8是方程3x+8= -a的解,求a2-4a的值.

4.如果把分数 的分子、分母分别加上正整数a,b,结果等于 ,那么a+b的最小值是多少?

5.在有理数集合里定义运算“※”,其规则为a※b= -b.试求(x※3)※2=1的解.

6.有一列数为1,4,7,10,…,则第n个数是多少?在这列数中取出三个连续数,其和为48,问这三个数分别是多少? (其中n是正整数)

7.在一个内径(内部直径)为10 cm,高为25 cm的圆柱形铁桶中装有20 cm深的水,现将棱长为5 cm的正方体铁块放入铁桶中,则桶中的水位会上升多少厘米?若放入铁桶中的是底面直径为6 cm,高为20 cm的铁块,则铁桶中的水是否会溢出?为什么?

二、应用题(每题7分,共42分)
8.某村有甲、乙两生产小组,2002年总产量为10万千克,采用科学种田后,2003年甲组增产10%,乙组增产15%.如果整个村2003年比2002年增产12%,求2003年甲、乙两组各生产粮食多少万千克.

9.一件工作甲单独做用10天,乙单独做用12天,丙单独做用15天;甲、丙先做2天后,甲离去,丙又单独做了3天后,乙也参加进来,问还需几天才能完成?

10.甲、乙、丙三人在长400 m的环形跑道上,同时同地分别以每秒6m、4m、8 m的速度跑步出发,并且甲、乙反向,甲、丙同向.当丙遇到乙时,即反向迎甲而跑,遇上乙时,又反向迎乙,如此练习下去,直到甲、乙、丙三人相遇为止,求丙跑了多少米.

11.某公司有甲、乙两个工程队,甲队人数比乙队人数的 多28人,现因任务需要,从乙队调走20人到甲队,这时甲队人数是乙队人数的2倍,求甲、乙两队原来各有多少人.

12.12时,时针、分针、秒针三针重合,问至少经过多长时间,秒针把时针、分针形成的夹角平分?

13.A、B两地间路程为360 km,甲车从A地出发开往B地,每小时行驶72 km;甲车出发25 min后,乙车从B地出发开往A地,每小时行驶48 km.两车相遇后,各自仍按原速度原方向继续行驶,那么相遇以后两车相距100 km时,甲车从出发开始共行驶了多少时间?

三、创新题(每题7分,共14分)
14.某手表每小时比标准时间慢3分钟,若在凌晨4时30分与标准时间对准,则当天上午该手表指示的时间是10时50分时,标准时间是多少?

15.一组割草人要把两片草地割完,大片是小片的2倍,上午人们都在大的一片上割草,午后人们对半分开,一半人仍留在大草地上,另一半去割小的一片,到傍晚时,大的一片刚好割完,小的一片还剩下一小块,这一小块由一人用一整天刚好割完,问这组割草人有多少人?

四、中考题(2分)
16.(2006•青岛)某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价( ),商店老板才能出售.
A.80元 B.100元 C.120元 D.160元
附加题——竞赛趣味题(20分)
有一个六位数,1 ,它乘3以后得到六位数 ,求这个六位数.

知能点1:市场经济、打折销售问题
(1)商品利润=商品售价-商品成本价 (2)商品利润率= ×100%
(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.
1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( )
A.45%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50
C. x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50
4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.
知能点2: 方案选择问题
6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?

7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.
(1)写出y1,y2与x之间的函数关系式(即等式).
(2)一个月内通话多少分钟,两种通话方式的费用相同?
(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?

9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。
(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费)
(2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。

知能点3储蓄、储蓄利息问题
(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税
(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)
(3)
11. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

一年 2.25
三年 2.70
六年 2.88
12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:
(1)直接存入一个6年期;
(2)先存入一个三年期,3年后将本息和自动转存一个三年期;
(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?

13.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于( ).
A.1 B.1.8 C.2 D.10
15.用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。问张叔叔当初购买这咱债券花了多少元?

知能点4:工程问题
工作量=工作效率×工作时间 工作效率=工作量÷工作时间
工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1
16. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

17. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
 

19.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

21.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?

知能点5:若干应用问题等量关系的规律
(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量=原有量×增长率 现在量=原有量+增长量
(2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S•h= r2h
②长方体的体积 V=长×宽×高=abc
22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的 。问每个仓库各有多少粮食?

23.一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).

24.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?

知能点6:行程问题
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题 (2)追及问题
快行距+慢行距=原距 快行距-慢行距=原距
(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
  (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
  (2)两车同时开出,相背而行多少小时后两车相距600公里?
  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。

26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?

27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路程为10千米,求A、B两地之间的路程。

28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?

30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:若已知队长320米,则通讯员几分钟返回?若已知通讯员用了25分钟,则队长为多少米?

31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?

32.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。

知能点7:数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
33. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.

34. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
新的电脑专家
2012-01-19 · 超过21用户采纳过TA的回答
知道答主
回答量:62
采纳率:0%
帮助的人:45.6万
展开全部
1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

希望您能采纳!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上善若水艾格格
2012-01-18
知道答主
回答量:33
采纳率:0%
帮助的人:18.6万
展开全部
1、三个连续奇数的和是387,求这三个奇数。
2、在日历上任意画一个含有9个数字的方框(3╳3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。
3、一个三位数,三个数位上的数的和是17,百位上的数比十位上的数大7,个位上的数是十位上数的3倍,求这三个数。
4、已知三个连续奇数的和比它们相同的两个偶数的和多15,求三个连续奇数。
5、三个连续偶数的和是18,求它们的积。
6、有两个数,第一个数比第二个数的 还小4,第二个数恰好等于第一个数的4倍,求这两个数。
7、现在弟弟的年龄恰是哥哥年龄的 ,而九年前弟弟的年龄是哥哥年龄的 ,问哥哥现在的年龄是多少?
8、将55分成四个数,如果第一个数加1,第二个数减去1,第三个数乘以2,第四个数除以3,所得的数都相同,求这四个数分别是多少?
9、1998年某人的岁数正好等于他出生年份的数字之和,问这个人2003年是多少岁?
10、小华参加日语培训,为期8天,这8天的和为100,问小华几号结束培训?
11、小明今年的生日的前一天,当天和后一天的日期之和是78,小明今年几号过生日?
12、王老师要参加三天培训,这三天恰好在日历的一竖排上且三个数字相连,并且这三个日子的数字之和是36,你知道王老师都要在几号参加培训吗?
13、小明和小红作游戏,小明拿出一张日历说;“我用笔圈出了2╳2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?
14、三个连续偶数的和是36,求它们的积。
15、一个两位数,个位数字是十位数字的4倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。
16、三个连续奇数的和是75,求这三个数。
17、一个两位数,十位数字是a,个位数字是b,把这个两位数的十位数字与个位数字对调,所得的数减去原数,差为72,求这个两位数。
18、用一个正方形在某个月的日历上圈出2╳2个数的和为64,这4天分别是几号?
19、如果用一个正方形在某个月的日历上圈出3╳3个数的和为126,则这9天分别是几号?
20、若今天是星期一,请问2004天之后是星期几?
21、有甲、乙两位同学,甲对乙说:“如果把你的笔给我一枝,那么我的笔是你的笔的2倍。”乙对甲说:“如果把你的笔给我一枝,那么我的笔和你的一样多。”问你们各有多少枝笔?
22、有一个两位数,十位数字比个位数字的2倍多1,将两个数字对调后,所得的数比原数小36,求原数。
23、一个数的七分之一与5的差等于最小的正整数,这个数是多少?
24、一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的五分之一,求这个两位数。
25、某中学初一学生小刚今年13岁,属羊,非常巧合的是,小刚的爷爷也是属羊的,而且两个人的年龄的和是86,你能算出小刚爷爷的年龄吗?
26、三个连续偶数的和比其中最大的一个数大10,这三个连续偶数是什么?它们的和是多少?

我变胖了
1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?
2、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?
3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
4、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?
5、一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔化成一个圆柱体,其底面直径为20厘米,请求圆柱体的高(π取3.14)
6、用5.2米长的铁丝围成一个长方形,使得长比宽多0.6米,求围成的长方形的长和宽为多少米?
7、一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。
8、长方形的长和宽的比是5:3,长比宽长12厘米,求这个长方形的长和宽分别是多少。
9、小圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆柱体体积的2.5倍,则大圆柱的高是多少厘米?
10、要锻造一个半径为5厘米,高为8厘米的圆柱形毛胚,应截取半径为4厘米的圆钢多长?
11、已知黄豆发芽后的重量可以增加3.5倍,现需要100千克黄豆芽,要用黄豆多少千克?
12、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。
13、用一个底面半径为5厘米的圆柱形储油器,油液中浸有钢珠,若从中捞出546π克钢珠,问液面下降了多少厘米?(1立方厘米钢珠7.8克)
14、要锻造一个直径为70毫米,高为45毫米的圆柱形零件毛胚,要截取直径为50毫米的圆钢多少毫米?
15、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?
16、用一根20厘米的铁丝围成一个长方形(1)使得长方形的长比宽大2.6厘米,此时,长方形的长、宽各是多少厘米?(2)使得长方形的长与宽相等,此时正方形的边长是多少厘米?
17、有一个圆柱形铁块,底面直径为20厘米,高为26厘米,把它锻造成长方体毛胚,若使长方体的长为10π厘米,宽为13厘米,求长方体的高。

打折销售
商品利润=商品售价—商品成本价
商品的利润率=
=
商品打 折出售规定按标价的 出售。
1、商品进价为400元,标价为600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?
2、某种商品进价为1600元,按标价的8折出售利润率为10%,问它的标价是多少?
3、甲种运动器械进价1200元,按标价1800元的9折出售,乙种跑步器,进价2000元,按标价3200元的8折出售,哪种商品的利润率更高些?
4、一批货物,甲把原价降低10元卖,用售价的10%作资金,乙把原价降低20元,用售价的20%作资金,若两人资金一样多,求原价。
5、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?
6、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元?
7、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?
8、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
9、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
10、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
11、市场鸡蛋按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每个0.28元售出,结果获利11.2元,问商贩当初买进多少鸡蛋?
12、某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?
13、某股民将甲、乙两种股票卖出,甲种股票卖出1500元,获利20%,乙种股票也卖出1500元,但亏损20%,该股民在这次交易中是赢利还是亏损?赢利或亏损多少?
14、某商店从某公司批发部购100件A钟商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元?
15、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?
16、一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元?这套家具售出后可赚多少元?
17、某种商品标价为226元,现打七折出售,仍可获利13%,这钟商品的进价是多少?
18、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元?
19、某商品的进价是3000元,标价是4500元
(1) 商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品?
(2) 若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品?
(3) 如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品?

“希望工程”义演
1、甲、乙两班共90人,期中考试后,由甲班转入乙班4人,这时甲班人数是乙班人数的80%,问期中考试前两班各有多少人?
2、某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用24天,印完全套书共用了多少天?
3、学校开展植树活动,甲班和乙班共植树31棵,其中甲班植树数比乙班植树数的2倍多一棵,求两班各植树多少棵?
4、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?
5、某车间100个工人,每人平均每天可加螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓配两个螺母),应如何分配加工螺栓和螺母的工人?
6、我校数学活动小组,女生的人数比男生的人数的 少2人,如果女生增加3人,男生减少1人,那么女生的人数比全组人数的 多3人,求原来男女生的人数。
7、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?
8、在全国足球甲A联赛的前11轮比赛中,某队保持连续不败(不败含取胜和打平)共积23分,按比赛规则,胜一场得3分,平一场得1分,负一场得0分,求该队在这11场比赛中共胜了多少场?
9、甲、乙、丙三位同学向贫困地区的希望小学捐赠图书,已知他们捐赠的图书数之比为7:5:8,且共捐书200本,问三位同学各捐书多少本?
10、某校七年级举行数学竞赛,80人参加,总平均成绩63分,及格学生平均成绩为72分,不及格学生平均48分,问及格学生有多少人?
11、某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?
12、在全国足球甲级A组的前11轮(场)比赛中,W队保持连续不败,共积23分,按比赛规则,胜一场得3分,平场得1分,那么该队共胜了多少场?
13、一批宿舍,若每间住1人,有10人无处住,若每间住3人,则有10间无人住,那么这批宿舍有多少间,人有多少个?
14、师生共100人去植树,教师每人栽2棵树,学生平均每2人栽1棵树,一共栽了110棵,问教师和学生各有多少人?
15、某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?
16、甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口多少不等,只有按2:3:6的比例摊派才较合理,问甲、乙、丙三个村庄各派出多少个劳动力?
17、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半还少1人,三个车间各有多少人?
18、甲、乙两池共存水40吨,甲池注水4吨,乙池出水8吨后,两池水恰好相等,求甲、乙两池原有多少吨水?
19、数学课外小组的女同学占全组人数的 ,加入4名女同学后,就占全组人数的 ,数学课外小组原来有多少人?
20、有一块面积为1600平方米的地分成两部分,使它们的面积比为3:5,求每一部分的面积。
21、某队有林场108公顷,牧场54公顷,现在要栽培一种一种新果树,把一部分牧场改为林场,使牧场面积只占林场面积的20%,改为林场的牧场面积是多少公顷?

能追上小明吗?
1、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?
2、甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?
3、甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲飞机的速度是乙飞机的1.5倍,求乙飞机的速度。
4、甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?
5、从甲地到乙地,海路比陆路近40千米,上午10点,一艘轮船从甲地驶往乙地,下午1点,一辆汽车从甲地开往乙地,它们同时到达乙地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,那么从甲地到乙地海路与陆路各是多少千米?
6、一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?
7、矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米/秒,人离开的速度是5米/秒,问引火线至少需要多少厘米?
8、小明和小丽同时从学校出发到运动场看体育比赛,小明每分钟走80米,他走到运动场等了5分钟,比赛才开始,小丽每分钟走60米,她进入运动场时,比赛已经开始3分钟,问学校到运动场有多远?
9、一船在两码头之间航行,顺水需4小时,逆水4个半小时后还差8公里,水流每小时2公里,求两码头之间的距离?
10、A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?
11、甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为每小时45千米,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为每小时60千米,求快车开出后几小时与慢车相遇?
12、一艘轮船从甲地顺流而行9小时到达乙地,原路返回需要11小时才能到达甲地,已知水流速度为2千米/时,求轮船在静水中的速度。
顺逆流问题:
船在顺水中的速度=船在静水中的速度+水流速度
船在逆水中的速度=船在静水中的速度—水流速度
船顺水的行程=船逆水的行程
环形跑道的追及问题:
慢者的行程 + 一圈的周长= 快者的行程
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式