求曲线所围成图形的公共部分的面积p=3,p=2(1+cosα)

帐号已注销
2020-12-31 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

曲线所围成图形的公共部分的近似面积=14

解析:

联立两个方程

r=3cosθ

r=1+cosθ

当两个相等时,3cosθ=1+cosθ

即2cosθ=1,θ=π/3和-π/3

先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍

S1=∫[0,π/3](1+cosθ)^2dθ=∫[0,π/3](1+2cosθ+cosθ^2)dθ=π/2+9根号3/8

对于剩下的部分就是圆r=3cosθ,从π/3积分到π/2,仍然上下对称

S2=9∫[π/3,π/2](cosθ)^2dθ=3π/4-9根号3/8

总面积S=S1+S2=3π/4-9根号3/8+π/2+9根号3/8=5π/4

扩展资料:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

参考资料来源:百度百科-定积分

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
洪范周
2014-02-19 · TA获得超过8万个赞
知道大有可为答主
回答量:2万
采纳率:20%
帮助的人:6781万
展开全部

如图所示:曲线所围成图形的公共部分的近似面积=14

追问
能写一下具体过程吗?
追答
具体过程就是,在黄色面积周围的曲线上加上许多“构造点”,近似地代替曲线。然后用《几何画板   -构造-多边形内部-度量-面积》即可得到所求的面积。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式