高等数学中二重积分和二次积分的疑惑求解;

计算二重积分,将积分化成二次积分;我的问题如下:第一:二重积分和二次有什么区别?第二:在计算二重积分的时候老师经常说积分次序不要错了,不然积不出来,但是辅导书上有的二次积... 计算二重积分,将积分化成二次积分;我的问题如下:第一:二重积分和二次有什么区别?第二:在计算二重积分的时候老师经常说积分次序不要错了,不然积不出来,但是辅导书上有的二次积分就直接把x,y相互对调了(原因是定积分与积分变量无关),我想知道什么时候才可以直接兑换x,y;其兑换了x或者y不就相当于交换了积分次序了吗?其取值范围不需要再重新写吗?谢谢; 展开
 我来答
hardy096
2013-12-13 · 超过10用户采纳过TA的回答
知道答主
回答量:26
采纳率:0%
帮助的人:23.7万
展开全部
这是我的理解:
二重积分和二次积分的区别
二重积分是有关面积的积分,二次积分是两次单变量积分。
①当f(x,y)在有界闭区域内连续,那么二重积分和二次积分相等。对开区域或无界区域这关系不衡成立。
②可二次积分不一定能二重积分。如对[0,1]*[0,1]区域,对任意x∈[0,1]可定义一个对y连续的函数g(x,y)(y∈[0,1])∫g(x,y)dy=1.那么∫dx∫g(x,y)dy有意义,一般地∫∫g(x,y)dσ没意义。
③可以二重积分不一定能二次积分。区域S={(x,y)|x>=1,|y|<=1/x^3}。恒等函数f(x,y)=1,(x,y)∈S。f在S上可以二重积分却不能二次积分(先对x再对y求积分,在y=0那条线上积分无穷)。

积分对调
上面③的例子中积分对调了一个可以积分,一个不可以积分(先对y积分x固定时积分得到2/x^3.2/x^3对x(x属于[1,无穷)可积分。
可对调x,y的情况是
连续且绝对可积,对x或y求分步积分存在。特殊情况函数在有界闭区域连续可对调x,y,这时由于连续性函数在闭区域存在极值。
积分变换一定要求变换后的积分区间与原来相同,且不能有重复积分的情况
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式