如图AB∥CD,∠1=∠B,∠2=∠D,证明BE⊥DE
1个回答
展开全部
证法1:
∵AB//CD
∴∠A+∠C=180º【平行,同旁内角互补】
∵∠1+∠B+∠A=180º
∠2+∠D+∠C=180º【三角形内角和180º】
∴∠1+∠B+∠2+∠D+(∠A+∠C)=360º
∴∠1+∠B+∠2+∠D=180º
∵∠1=∠B,∠2=∠D
∴2∠1+2∠2=180º
∴∠1+∠2=90º
∴∠BED=180º-∠1-∠2=90º
即BE⊥DE
证法2:
作EF//AB
则∠BEF=∠B
∵∠1=∠B
∴∠1=∠BEF
∵AB//CD
∴EF//CD
∴∠FED=∠D
∵∠2=∠D
∴∠2=∠FED
∵∠1+2∠+∠BEF+∠FED=180º
∴2(∠BEF+∠FED)=2∠BED=180º
∴∠BED=90º
即BE⊥DE 望采纳~~~~~~
∵AB//CD
∴∠A+∠C=180º【平行,同旁内角互补】
∵∠1+∠B+∠A=180º
∠2+∠D+∠C=180º【三角形内角和180º】
∴∠1+∠B+∠2+∠D+(∠A+∠C)=360º
∴∠1+∠B+∠2+∠D=180º
∵∠1=∠B,∠2=∠D
∴2∠1+2∠2=180º
∴∠1+∠2=90º
∴∠BED=180º-∠1-∠2=90º
即BE⊥DE
证法2:
作EF//AB
则∠BEF=∠B
∵∠1=∠B
∴∠1=∠BEF
∵AB//CD
∴EF//CD
∴∠FED=∠D
∵∠2=∠D
∴∠2=∠FED
∵∠1+2∠+∠BEF+∠FED=180º
∴2(∠BEF+∠FED)=2∠BED=180º
∴∠BED=90º
即BE⊥DE 望采纳~~~~~~
追问
谢谢你啊!
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询