已知:x+y+z=0,求证:x^3+y^3+z^3=3xyz
3个回答
展开全部
a^2+b^2+c^2+2ab+2ac+2bc
x+y+z=0
(x+y+z)^2=0
x^2 +y^2 +z^2+ 2(xy+ yz+zx ) =0
(x+y+z)^3=0
(x+y+z)^2(x+y+z)=0
x^3+y^3+z^3 + x[(y^2 +z^2+ 2(xy+ yz+zx )] +y[x^2 +z^2+ 2(ab+ bc+ca )]
+z[x^2 +y^2 + 2(ab+ bc+ca )] =0
x^3+y^3+z^3 + [ xy(x+y)+yz(y+z)+zx(z+x) + 2(xy+ yz+zx ))(x+y+z) ] =0
x^3+y^3+z^3 + [xy(-z) +yz(-y) + zx(-y) +0] =0
x^3+y^3+z^3 -3xyz =0
x^3+y^3+z^3 =3xyz
x+y+z=0
(x+y+z)^2=0
x^2 +y^2 +z^2+ 2(xy+ yz+zx ) =0
(x+y+z)^3=0
(x+y+z)^2(x+y+z)=0
x^3+y^3+z^3 + x[(y^2 +z^2+ 2(xy+ yz+zx )] +y[x^2 +z^2+ 2(ab+ bc+ca )]
+z[x^2 +y^2 + 2(ab+ bc+ca )] =0
x^3+y^3+z^3 + [ xy(x+y)+yz(y+z)+zx(z+x) + 2(xy+ yz+zx ))(x+y+z) ] =0
x^3+y^3+z^3 + [xy(-z) +yz(-y) + zx(-y) +0] =0
x^3+y^3+z^3 -3xyz =0
x^3+y^3+z^3 =3xyz
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^3+y^3+z^3=x^3+y^3+(-x-y)^3
=x^3+y^3-(x+y)^3
=x^3+y^3-(x^3+3x^2y+3xy^2+y^3)
=x^3+y^3-x^3-3x^2y-3xy^2-y^3=-3x^2y-3xy^2
3xyz=3xy(-x-y)=-3x^2y-3xy^2
x^3+y^3+z^3=3xyz
=x^3+y^3-(x+y)^3
=x^3+y^3-(x^3+3x^2y+3xy^2+y^3)
=x^3+y^3-x^3-3x^2y-3xy^2-y^3=-3x^2y-3xy^2
3xyz=3xy(-x-y)=-3x^2y-3xy^2
x^3+y^3+z^3=3xyz
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询