判断函数的奇偶性?
3个回答
展开全部
【分析】判断一个函数的奇偶性,首先判断函数的定义域是否关于原点对称,若不对称,则非奇非偶;若对称,则再判断f(-x)与f(x)的关系,f(-x)=f(x)为偶,f(-x)=-f(x)为奇,否则为非奇非偶。
A.解:易知f(x)=sinx2定义域关于原点对称,
又f(-x)=sin(-x)2=sinx2=f(x),所以f(x)为偶函数。
B.解:易知f(x)=tanx+tanx/2定义域为x不=π/2+kπ,关于原点不对称,
所以f(x)为非奇非偶函数。
C.解:f(x)=sinx+cosx定义域关于原点对称,
又f(-x)=sin(-x)+cos(-x)=cosx-sinx,既不=f(x),又不=-f(x)
所以f(x)为非奇非偶函数。
D.解:易知f(x)=1/3cosx/2定义域关于原点对称,
又f(-x)=1/3cos(-x)/2=1/3cosx/2=f(x),所以f(x)为偶函数。
A.解:易知f(x)=sinx2定义域关于原点对称,
又f(-x)=sin(-x)2=sinx2=f(x),所以f(x)为偶函数。
B.解:易知f(x)=tanx+tanx/2定义域为x不=π/2+kπ,关于原点不对称,
所以f(x)为非奇非偶函数。
C.解:f(x)=sinx+cosx定义域关于原点对称,
又f(-x)=sin(-x)+cos(-x)=cosx-sinx,既不=f(x),又不=-f(x)
所以f(x)为非奇非偶函数。
D.解:易知f(x)=1/3cosx/2定义域关于原点对称,
又f(-x)=1/3cos(-x)/2=1/3cosx/2=f(x),所以f(x)为偶函数。
展开全部
1.用必要条件
函数具有奇偶性的必要条件是定义域关于原点对称.
常用于选择题,如果不是关于原点对称,那么函数没有奇偶性.
2.用奇偶性
若定义域关于原点对称
则f(-x)=f(x),f(x)是偶函数.
f(-x)=-f(x),f(x)是奇函数.
3.用函数运算
f是偶函数,F是偶函数,j是奇函数,J是奇函数.
则偶
偶=偶,偶×偶=偶,
奇+奇=奇,奇×奇=偶
,
奇×偶=奇。
只证明奇×奇=偶,其他同理可证.
证明:设G(x)=j(x)J(x)
则G(-x)=j(-x)J(-x)=-j(x)[-J(x)]=G(x),
∴G(x)是偶函数.
4.用图象
关于y轴对称的是偶函数,
关于原点对称的是奇函数。
函数具有奇偶性的必要条件是定义域关于原点对称.
常用于选择题,如果不是关于原点对称,那么函数没有奇偶性.
2.用奇偶性
若定义域关于原点对称
则f(-x)=f(x),f(x)是偶函数.
f(-x)=-f(x),f(x)是奇函数.
3.用函数运算
f是偶函数,F是偶函数,j是奇函数,J是奇函数.
则偶
偶=偶,偶×偶=偶,
奇+奇=奇,奇×奇=偶
,
奇×偶=奇。
只证明奇×奇=偶,其他同理可证.
证明:设G(x)=j(x)J(x)
则G(-x)=j(-x)J(-x)=-j(x)[-J(x)]=G(x),
∴G(x)是偶函数.
4.用图象
关于y轴对称的是偶函数,
关于原点对称的是奇函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如何判断函数的奇偶性
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询