已知函数f(x)=(x^2-4x+a)/x,1≤x≤5,a∈R.
(1)若a=4,求函数f(x)的最值(2)若1≤x≤5时,不等式f(x)<0恒成立,求实数a的取值范围我的答案是(1)最大值1.8,最小值0(2)x<-5是这样吗?我的过...
(1)若a=4,求函数f(x)的最值
(2)若1≤x≤5时,不等式f(x)<0恒成立,求实数a的取值范围
我的答案是
(1)最大值1.8,最小值0
(2)x<-5
是这样吗?
我的过程不清,请发过程来。O(∩_∩)O谢谢了!!! 展开
(2)若1≤x≤5时,不等式f(x)<0恒成立,求实数a的取值范围
我的答案是
(1)最大值1.8,最小值0
(2)x<-5
是这样吗?
我的过程不清,请发过程来。O(∩_∩)O谢谢了!!! 展开
展开全部
1)a=4, f(x)=x+4/x-4>=2√(x*4/x) -4=0
当x=4/x, 即x=2时取等号。
f(1)=1+4-4=1
f(5)=5+4/5-4=9/5
因此在[1.5]上, f(x)的最大值为9/5, 最小值为0.
2)f(x)=x+a/x-4<0
即a<(4-x)x=-x^2+4x=4-(x-2)^2=g(x)
1=<x<=5时,g(x)最大值为g(2)=4, 最小值为g(5)=-5
因此a的取值范围是:[-5,4],
当x=4/x, 即x=2时取等号。
f(1)=1+4-4=1
f(5)=5+4/5-4=9/5
因此在[1.5]上, f(x)的最大值为9/5, 最小值为0.
2)f(x)=x+a/x-4<0
即a<(4-x)x=-x^2+4x=4-(x-2)^2=g(x)
1=<x<=5时,g(x)最大值为g(2)=4, 最小值为g(5)=-5
因此a的取值范围是:[-5,4],
追问
不是a<g(x)吗?那就应该a<g(x)min呀!为什么a的取值范围是:[-5,4]呢?
追答
哦,写错了,是应该a<-5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)要求一个函数的最值,要先对它进行求导,将a=4代到函数里,则f(x)=x+4/x-4
则f'(x)=1-4/x^2,当f'(x)=0时,f(x)会取得其最值,1-4/x^2=0,又因为x的范围为1≤x≤5
则当x=2时,f(x)取得最值,又因为f''(x)=8/x^3>0,则fmin=f(2)=2+4/2-4=0
f(1)=1,f(5)=9/5,所以fmax=f(5)=9/5
2)首先求得f'(x)=1-a/x^2,接下来要分三种情况讨论
a)a>0时,当x=a^1/2时,f(x)取得最小值为0,所以a>0时不成立;
b)a=0时,f(x)=x-4,显然不满足当1≤x≤5时不等式f(x)<0恒成立的条件;
c)a<0时,f'(x)=1-a/x^2>0,说明f(x)在1≤x≤5时是单调递增函数,所以当x=5时满足f(5)<0即可满足题目要求,根据f(5)=1+a/5<0可求出a的范围为:a<-5
则f'(x)=1-4/x^2,当f'(x)=0时,f(x)会取得其最值,1-4/x^2=0,又因为x的范围为1≤x≤5
则当x=2时,f(x)取得最值,又因为f''(x)=8/x^3>0,则fmin=f(2)=2+4/2-4=0
f(1)=1,f(5)=9/5,所以fmax=f(5)=9/5
2)首先求得f'(x)=1-a/x^2,接下来要分三种情况讨论
a)a>0时,当x=a^1/2时,f(x)取得最小值为0,所以a>0时不成立;
b)a=0时,f(x)=x-4,显然不满足当1≤x≤5时不等式f(x)<0恒成立的条件;
c)a<0时,f'(x)=1-a/x^2>0,说明f(x)在1≤x≤5时是单调递增函数,所以当x=5时满足f(5)<0即可满足题目要求,根据f(5)=1+a/5<0可求出a的范围为:a<-5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询