根号下分数怎么算?

 我来答
热点那些事儿
2020-11-01
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

分母有理化。

分析:

比如 √(2/3)=√2/√3

分子分母同时乘以√3得√2*√3/(√3*√3)=√6/3 

就是分母是根号几,分子分母就同时乘以根号几,分母有理化就行。

扩展资料:

根式乘除法法则:

1、同次根式相乘(除),把根式前面的系数相乘(除),作为积(商)的系数;把被开方数相乘(除),作为被开方数,根指数不变,然后再化成最简根式。

2、非同次根式相乘(除),应先化成同次根式后,再按同次根式相乘(除)的法则进行运算。

根式的加减法法则:各个根式相加减,应先把根式化成最简根式,然后合并同类根式。二次根式加减法法则:先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。

在根式的加减法中,同类根式要合并。一般地,几个根式总可以化成同次根式,但不一定能化成同类根式。

云剖N
2023-07-16
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

1. 知识点定义来源和讲解:

根号下分数是指数根号下一个分数的形式,通常以 √a/b 或 a^(1/b) 的形式表示,其中 a 和 b 分别为分子和分母。

2. 知识点运用:

根号下分数的计算在数学和物理等领域中经常出现,特别是在代数、几何和计算问题中。它常用于求解方程、计算几何图形的面积和体积等。

3. 知识点例题讲解:

例题1: 计算 √9/4。

解答: 根号下分数的计算即为求数的分数次方根。对于这个例题,我们可以将 √9/4 转换成 (9/4)^(1/2)。根据指数运算的性质,我们可以得到 (√9)/(√4) = 3/2。因此,√9/4 的值为 3/2。

例题2: 计算 √(16/25)。

解答: 将根号下分数转换成分数次方根的形式,即 (√16)/(√25)。借助指数运算的性质,我们可以简化为 4/5。所以,√(16/25) 的值是 4/5。

需要注意的是,根号下分数的计算中要特别处理负数情况,以保证结果的正确性。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
五岁抬头团
2023-07-27
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
要计算根号下的分数,可以按照以下步骤进行:
1. 将根号内的分子和分母分别开根号。
2. 简化根号内的分数(如果可能的话)。
3. 将分子和分母的根号部分约简到最简形式(如果可能的话)。
4. 如果需要,将分子和分母约简到最简形式,以得到最终的结果。
举例来说,如果要计算根号下的分数 4/9:
1. 分子和分母分别开根号:根号下的分子是 2,根号下的分母是 3。
2. 简化根号内的分数:这里的分数已经是简化形式,无需进一步简化。
3. 根号部分的约简:根号下的分子和分母都不能再进行进一步的根号约简。
4. 最终结果:根号下的分数 4/9 无法再进一步简化。
所以,根号下的分数 4/9 的最终结果为 2/3。请注意,这只是一个示例,具体的计算方法可能根据特定的问题和分数的性质有所不同,因此在具体计算时可能需要采用更适用的方法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2023-07-22
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
根号下分数的计算方法是先化简分母,然后再将根号移到分子上,并且取出根号内可以化简的因子。具体步骤如下:
1. 将分母化简为平方数:
- 如果分母是一个整数的平方,可以直接提取根号,例如,√(9/16) = 3/4。
- 如果分母不是一个整数的平方,需要将其分解为素因数的乘积,然后提取根号,例如,√(15/16) = √(3/4 * 5/4) = (√3 * √5) / 4。
2. 将根号移到分子上:
- 提取完根号后,将根号移到分子上即可,例如,(√3 * √5) / 4 = (√3 * √5) / √(4^2) = (√3 * √5) / 2×4 = (√3 * √5) / 8。
3. 化简根号内的因子:
- 如果根号内的因子可以进一步化简,就进行化简操作,例如,√3 = √(3 * 1) = √3 * √1 = √3。
最后,将所有化简后的因子整理,得到最简形式的根号下分数。例如,(√3 * √5) / 8 = (√3 * √5) / 8。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wlx1500379
2012-01-17
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
将根号下分式的分子、分母,同时乘以分母。然后将分母开方作为分母,根号下分子分母相乘作为根号下数即可。比如√1/3=√1×3/3×3=1/3√3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式