如图 AB分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2
如图AB分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的年级为6(1)求△COP的面积(2)求...
如图 AB分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的年级为6
(1)求△COP的面积
(2)求点A的坐标以及p的值
(3)若△BOP于△DOP的面积相等,求直线BD的函数解析式 展开
(1)求△COP的面积
(2)求点A的坐标以及p的值
(3)若△BOP于△DOP的面积相等,求直线BD的函数解析式 展开
1个回答
2013-11-08 · 知道合伙人软件行家
关注
展开全部
⑴SΔCOP=1/2×2×2=2。
⑵直线AP过(2,P)与(0,2)得:Y=(P-2)/2X+2,令判虚Y=0得:X=-4/(P-2),掘带燃
∴OA=4/(P-2),SΔAOP=1/2*OA*P=2P/(P-2)=6,P=3,
-4/(P-2)=-4,∴A(-4,0);
⑶设D(0,m),直线PD解析式为:Y=(3-m)/2X+m,
令Y=0,得X=2m/(m-3),行败∴B(2m/(m-3),0),
SΔBOP=1/2OB*3=3m/(m-3),SΔDOP=1/2*OD*2=m,
根据题意得:3m/(m-3)=2m,m=9/2,
∴直线BD过(0,9/2)与(2,3),Y=-3/4X+9/2。
⑵直线AP过(2,P)与(0,2)得:Y=(P-2)/2X+2,令判虚Y=0得:X=-4/(P-2),掘带燃
∴OA=4/(P-2),SΔAOP=1/2*OA*P=2P/(P-2)=6,P=3,
-4/(P-2)=-4,∴A(-4,0);
⑶设D(0,m),直线PD解析式为:Y=(3-m)/2X+m,
令Y=0,得X=2m/(m-3),行败∴B(2m/(m-3),0),
SΔBOP=1/2OB*3=3m/(m-3),SΔDOP=1/2*OD*2=m,
根据题意得:3m/(m-3)=2m,m=9/2,
∴直线BD过(0,9/2)与(2,3),Y=-3/4X+9/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询