1个回答
2013-11-30
展开全部
1)连续点的定义是:如果函数在某一邻域内有定义,且x->x。时limf(x)=f(x。),就称x。为f(x)的连续点。
一个推论,即y=f(x)在x。处连续等价于y=f(x)在x。处既左连续又右连续,也等价于y=f(x)在x。处左、右极限都等于f(x。)。【这就包括了函数连续必须同时满足三个条件:函数在x。处有定义;x->x。极限limf(x)存在;x->x。时limf(x)=f(x。)】
初等函数在其定义域内是连续的。
(2)连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。
根据定理有:函数可导必然连续;不连续必然不可导
一个推论,即y=f(x)在x。处连续等价于y=f(x)在x。处既左连续又右连续,也等价于y=f(x)在x。处左、右极限都等于f(x。)。【这就包括了函数连续必须同时满足三个条件:函数在x。处有定义;x->x。极限limf(x)存在;x->x。时limf(x)=f(x。)】
初等函数在其定义域内是连续的。
(2)连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。
根据定理有:函数可导必然连续;不连续必然不可导
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询