如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°
已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8倍根号3),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同...
已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8倍根号3),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动设t(0<t≤8)秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当a=3,OD= 4/3倍根号3时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,P,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,P,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明. 展开
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当a=3,OD= 4/3倍根号3时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,P,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,P,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明. 展开
4个回答
展开全部
解: (1)因为四边形ABCO是菱形,∠AOC=60º,所以,∠AOB=30º.
连接AC交OB于M,则OM=1/2×OB,AM⊥OB.
所以AM=tan30º×OM=4. 所以,OA=AM/sin30º=8.
(2)由(1)可知A(4,4),B(0,8),C(-4,4).
设经过A,B,C三点的抛物线为y=ax2+c.
所以,16a+c=4, c=8.
a=-/4.
所以,经过A,B,C三点的抛物线为y=
(3)当a=3时,CP=t,OQ=3t, OD=.
所以,PB=8-t,BD=8-=.
由△OQD∽△BPD得
BP/OQ=BD/OD.即,所以,t=1/2.
当t=1/2时,OQ=3/2.同理可求Q(3/4, ).
设直线PQ的解析式为y=kx+b,则
k+b=, b=.
所以,k=-.
所以,直线PQ的解析式为y=-x+.
(4)当a=1时, △ODQ∽△OBA;当1<a<3时,以O,Q,D为顶点的三角形与△OAB不能相似;当a=3时, △ODQ∽△OBA.
理由如下:
① 若△ODQ∽△OBA,可得∠ODQ=∠OBA,此时PQ∥AB.故四边形PCOQ为平行四边形,所以,CP=OQ.
即at=t(0<t≤8).所以,a=1时, △ODQ∽△OBA.
② 若△ODQ∽△OBA.
(I)如果P点不与B点重合,此时必有△PBD∽△QOD.
所以,PB/OQ=BD/OD.
所以,,即
所以,OD=.
因为△ODQ∽△OAB,所以,OD/OA=OQ/OB.即.
a=1+.
因为0<t≤8,所以,此时a>3,不符合题意.
所以,即1<a<3时,以O,Q,D为顶点的三角形与△AB不能相似.
(II)当P与B重合时,此时D点也与B点重合.
可知此时t=8.由△ODQ∽△OAB得OD/OA=OQ/OB.
所以,OB2=OA×OQ.即(8)2=8×8a.
所以a=3,符合题意.
故当a=3时, △ODQ∽△OAB.
连接AC交OB于M,则OM=1/2×OB,AM⊥OB.
所以AM=tan30º×OM=4. 所以,OA=AM/sin30º=8.
(2)由(1)可知A(4,4),B(0,8),C(-4,4).
设经过A,B,C三点的抛物线为y=ax2+c.
所以,16a+c=4, c=8.
a=-/4.
所以,经过A,B,C三点的抛物线为y=
(3)当a=3时,CP=t,OQ=3t, OD=.
所以,PB=8-t,BD=8-=.
由△OQD∽△BPD得
BP/OQ=BD/OD.即,所以,t=1/2.
当t=1/2时,OQ=3/2.同理可求Q(3/4, ).
设直线PQ的解析式为y=kx+b,则
k+b=, b=.
所以,k=-.
所以,直线PQ的解析式为y=-x+.
(4)当a=1时, △ODQ∽△OBA;当1<a<3时,以O,Q,D为顶点的三角形与△OAB不能相似;当a=3时, △ODQ∽△OBA.
理由如下:
① 若△ODQ∽△OBA,可得∠ODQ=∠OBA,此时PQ∥AB.故四边形PCOQ为平行四边形,所以,CP=OQ.
即at=t(0<t≤8).所以,a=1时, △ODQ∽△OBA.
② 若△ODQ∽△OBA.
(I)如果P点不与B点重合,此时必有△PBD∽△QOD.
所以,PB/OQ=BD/OD.
所以,,即
所以,OD=.
因为△ODQ∽△OAB,所以,OD/OA=OQ/OB.即.
a=1+.
因为0<t≤8,所以,此时a>3,不符合题意.
所以,即1<a<3时,以O,Q,D为顶点的三角形与△AB不能相似.
(II)当P与B重合时,此时D点也与B点重合.
可知此时t=8.由△ODQ∽△OAB得OD/OA=OQ/OB.
所以,OB2=OA×OQ.即(8)2=8×8a.
所以a=3,符合题意.
故当a=3时, △ODQ∽△OAB.
苏州谭祖自动化科技有限公司_
2024-11-13 广告
2024-11-13 广告
苏州谭祖自动化科技有限公司专业提供高速精密分割器,凸轮及其他五金配件。随着现代工业对自动化、高速化、高精度化的日益追求,更可靠的凸轮分度器已成为当今世界上精密驱动的主流装置.它们作为自动化机器的核心传动装置发挥着至关重要的作用。此产品广泛用...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
展开全部
(1)因为∠AOC=60°,所以∠AOB=120°,OA=OB=8×根号3 ;
(2)经过A,B,C点的抛物线解析式是:y=-1/12x² + 16 ;
(2)经过A,B,C点的抛物线解析式是:y=-1/12x² + 16 ;
追问
(3)(4)呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)因为四边形ABCO是菱形,∠AOC=60°,
所以∠AOB=30°.
连接AC交OB于M,则OM=12OB,AM⊥OB
所以AM=tan30°×OM=4.
所以,OA=AM÷sin30°=8,
(2)由(1)可知A(4,43),B(0,83),C(-4,43)
设经过A、B、C三点的抛物线为y=ax2+c
所以16a+c=43,c=83,
∴a=-34
所以经过A、B、C三点的抛物线为y=-34x2+83
(3)当a=3时,CP=t,OQ=3t,OD=4
33.
所以PB=8-t,BD=83-4
33=20
33
由△OQD∽△BPD得
BPOQ=
BDOD
即8-t3t=
20
334
33,
所以t=12
当t=12时,OQ=32.
同理可求Q(34,3
34)
设直线PQ的解析式为y=kx+b,则
34k+b=3
34,b=4
33;
所以k=-7
39
所以直线PQ的解析式为y=-7
39x+4
33.
(4)当a=1时,△ODQ∽△OBA;
当1<a<3时,以O、Q、D为顶点的三角形与△OAB不能相似;
当a=1时,△ODQ∽△OBA.
理由如下:
①若△ODQ∽△OBA,可得∠ODQ=∠OBA,此时PQ∥AB.
故四边形PCOQ为平行四边形,
所以CP=OQ
即at=t(0<t≤8).
所以a=1时,△ODQ∽△OBA
②若△ODQ∽△OAB
(I)如果P点不与B点重合,此时必有△PBD∽△QOD
所以PBOQ=
BDOD
所以PB+OQOQ=
OBOD,即8-t+atat=8
3OD;
所以OD=8
3at8-t+at.
因为△ODQ∽△OAB,
所以ODOA=
OQOB即8
3at8-t+at8=at8
3
∴a=1+16t.
∵0<t≤8,
∴a≤3,不符合题意.即1<a≤3时,以O、Q、D为顶点的三角形与△ABO不能相似;
(II)当P与B重合时,此时D点也与B点重合.
可知此时t=8.
由△ODQ∽△OAB得ODOA=
OQOB.
所以OB2=OA×OQ.
即(83)2=8×8a
所以a=3符合题意.
故当a=3时△ODQ∽△OAB.
所以∠AOB=30°.
连接AC交OB于M,则OM=12OB,AM⊥OB
所以AM=tan30°×OM=4.
所以,OA=AM÷sin30°=8,
(2)由(1)可知A(4,43),B(0,83),C(-4,43)
设经过A、B、C三点的抛物线为y=ax2+c
所以16a+c=43,c=83,
∴a=-34
所以经过A、B、C三点的抛物线为y=-34x2+83
(3)当a=3时,CP=t,OQ=3t,OD=4
33.
所以PB=8-t,BD=83-4
33=20
33
由△OQD∽△BPD得
BPOQ=
BDOD
即8-t3t=
20
334
33,
所以t=12
当t=12时,OQ=32.
同理可求Q(34,3
34)
设直线PQ的解析式为y=kx+b,则
34k+b=3
34,b=4
33;
所以k=-7
39
所以直线PQ的解析式为y=-7
39x+4
33.
(4)当a=1时,△ODQ∽△OBA;
当1<a<3时,以O、Q、D为顶点的三角形与△OAB不能相似;
当a=1时,△ODQ∽△OBA.
理由如下:
①若△ODQ∽△OBA,可得∠ODQ=∠OBA,此时PQ∥AB.
故四边形PCOQ为平行四边形,
所以CP=OQ
即at=t(0<t≤8).
所以a=1时,△ODQ∽△OBA
②若△ODQ∽△OAB
(I)如果P点不与B点重合,此时必有△PBD∽△QOD
所以PBOQ=
BDOD
所以PB+OQOQ=
OBOD,即8-t+atat=8
3OD;
所以OD=8
3at8-t+at.
因为△ODQ∽△OAB,
所以ODOA=
OQOB即8
3at8-t+at8=at8
3
∴a=1+16t.
∵0<t≤8,
∴a≤3,不符合题意.即1<a≤3时,以O、Q、D为顶点的三角形与△ABO不能相似;
(II)当P与B重合时,此时D点也与B点重合.
可知此时t=8.
由△ODQ∽△OAB得ODOA=
OQOB.
所以OB2=OA×OQ.
即(83)2=8×8a
所以a=3符合题意.
故当a=3时△ODQ∽△OAB.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我们做过,我找找卷子啊。。。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询