已知x、y、z是正实数,x+y+z=1 求证1/(1+x^2)+1/(1+y^2)+1/(1+z^2)<=27/10
1个回答
展开全部
由柯西不等式得:(1+1+1)(x^2+y^2+z^2)>=(x+y+z)^2=1
3(x^2+y^2+z^2)>=1
x^2+y^2+z^2>=1/3
所以
x^2>=1/9
;y^2>=1/9
;z^2>=1/9
所以
1/
(1+x^2)<=1/(1+1/9)=9/10
1/
(1+y^2)<=1/(1+1/9)=9/10
1/
(1+z^2)<=1/(1+1/9)=9/10
三式相加即;
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)<=27/10如果有什么不懂的,欢迎追问
如果对你有帮助,请给双五星
谢谢
3(x^2+y^2+z^2)>=1
x^2+y^2+z^2>=1/3
所以
x^2>=1/9
;y^2>=1/9
;z^2>=1/9
所以
1/
(1+x^2)<=1/(1+1/9)=9/10
1/
(1+y^2)<=1/(1+1/9)=9/10
1/
(1+z^2)<=1/(1+1/9)=9/10
三式相加即;
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)<=27/10如果有什么不懂的,欢迎追问
如果对你有帮助,请给双五星
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询