f(ξ-1/n)=f(ξ)-1/n

若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊!... 若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊! 展开
 我来答
桑嗣桑韶敏
2020-04-21 · TA获得超过1037个赞
知道小有建树答主
回答量:1355
采纳率:100%
帮助的人:9.4万
展开全部
设F(x)=f(x+1/n)-f(x)
F(0)=f(1/n)-f(0)
F(1/n)=f(2/n)-f(1/n)

F[(n-1)/n]=f(1)-f[(n-1)/n]
那么F(0)+F(1/n)+…+F[(n-1)/n]
=f(1/n)-f(0)+f(2/n)-f(1/n)+…+f(1)-f[(n-1)/n]
=f(1)-f(0)
=0
所以F(0)=F(1/n)=…F[(n-1)/n]=0或存在F(i/n)和F(j/n)符号相反(0≤i
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2022-08-02 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25153

向TA提问 私信TA
展开全部

简单分析一下,答案如图所示




已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式