f(ξ-1/n)=f(ξ)-1/n
若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊!...
若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊!
展开
2个回答
展开全部
设F(x)=f(x+1/n)-f(x)
F(0)=f(1/n)-f(0)
F(1/n)=f(2/n)-f(1/n)
…
F[(n-1)/n]=f(1)-f[(n-1)/n]
那么F(0)+F(1/n)+…+F[(n-1)/n]
=f(1/n)-f(0)+f(2/n)-f(1/n)+…+f(1)-f[(n-1)/n]
=f(1)-f(0)
=0
所以F(0)=F(1/n)=…F[(n-1)/n]=0或存在F(i/n)和F(j/n)符号相反(0≤i
F(0)=f(1/n)-f(0)
F(1/n)=f(2/n)-f(1/n)
…
F[(n-1)/n]=f(1)-f[(n-1)/n]
那么F(0)+F(1/n)+…+F[(n-1)/n]
=f(1/n)-f(0)+f(2/n)-f(1/n)+…+f(1)-f[(n-1)/n]
=f(1)-f(0)
=0
所以F(0)=F(1/n)=…F[(n-1)/n]=0或存在F(i/n)和F(j/n)符号相反(0≤i
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询