高数;求不定积分

 我来答
茹翊神谕者

2020-11-18 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1606万
展开全部

可以考虑换元法

详情如图所示,有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海桦明教育科技
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加... 点击进入详情页
本回答由上海桦明教育科技提供
迷途羔羊1991

2020-11-21 · TA获得超过4.6万个赞
知道大有可为答主
回答量:3.3万
采纳率:81%
帮助的人:1233万
展开全部
不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以掌握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。

不定积分的计算方法主要有以下三种:

(1)第一换元积分法,即不定积分的凑微分求积分法;

(2)第二换元积分法

(3)分部积分法

常见的几种典型类型的换元法:

常见的几种典型类型的换元法

题型一:利用第一换元积分法求不定积分

例1:

分析:

解:

题型二:利用第二换元积分法求不定积分

例2:

解:

题型三:利用分部积分法求不定积分

分析:

例3:

解:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手绘星球
2020-11-21 · 专注手绘水彩 板绘 艺术类考前培训
手绘星球
采纳数:2134 获赞数:8097

向TA提问 私信TA
展开全部
在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。
关键词:不定积分;总结;解题方法
不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。
1.利用基本公式。(这就不多说了~)
2.第一类换元法。(凑微分)
设f(μ)具有原函数F(μ)。则

其中可微。
用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2:
例1:
【解】

例2:
【解】

3.第二类换元法:
设是单调、可导的函数,并且具有原函数,则有换元公式

第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种:

(7)当根号内出现单项式或多项式时一般用代去根号。

但当根号内出现高次幂时可能保留根号,

(7)当根号内出现单项式或多项式时一般用代去根号。

但当根号内出现高次幂时可能保留根号,

4.分部积分法.
公式:
分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取时,通常基于以下两点考虑:
(1)降低多项式部分的系数
(2)简化被积函数的类型
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式