求函数值域
f(x)=2sin²x-cos²x+2sinx-1,x属于[π/6,2π/3]f(x)=2sin²x-cos²x+2sinxcos...
f(x)=2sin²x-cos²x+2sinx-1,x属于[π/6,2π/3]
f(x)=2sin²x-cos²x+2sinxcosx-1 展开
f(x)=2sin²x-cos²x+2sinxcosx-1 展开
2个回答
展开全部
f(x)=3sinx^2-2+sin2x
=3*[(1-cos2x)/2]+2sin2x
=(3/2)+2sin2x-(3/2)cos2x
2^2+(3/2)^2=4+9/4=25/4 cosu=2/(5/2)=4/5 sinu=3/5
f(x)=(3/2)+(5/2)*[sin2xcosu-sinucos2x]
=(3/2)+(5/2)sin(2x-u)
x<=2π/3 2x<=4π/3 u<π/2 u+π/2<π
因此f(x)最大值=(3/2)+(5/2)=4
最小值 f(π/6)=3/2+2sin(π/3)-(3/2)cos(π/3)=3/2+√3-(3/2)*(1/2)=3/4+√3
=3*[(1-cos2x)/2]+2sin2x
=(3/2)+2sin2x-(3/2)cos2x
2^2+(3/2)^2=4+9/4=25/4 cosu=2/(5/2)=4/5 sinu=3/5
f(x)=(3/2)+(5/2)*[sin2xcosu-sinucos2x]
=(3/2)+(5/2)sin(2x-u)
x<=2π/3 2x<=4π/3 u<π/2 u+π/2<π
因此f(x)最大值=(3/2)+(5/2)=4
最小值 f(π/6)=3/2+2sin(π/3)-(3/2)cos(π/3)=3/2+√3-(3/2)*(1/2)=3/4+√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询