计算机原码补码的计算
计算机原码补码的计算方法:
1、原码:在计算机中的机器字长的最高位(最左边)表示正负,0为正数,1为负数,原码就是最高位是符号位,其余位表示数值(绝对值)大小。
2、反码:正数的反码就是其本身(原码)不变,而负数的反码就是在负数原码的基础上符号位保持不变,其余位按位取反。
3、补码:正数的补码就是其本身(原码),而负数的补码就是在原码的基础上符号位保持不变其余位按位取反,然后再+1,即在反码的基础上+1。
总结:正数的原码、反码和补码都一样,都等于原码。负数的反码就是在原码的基础上符号位不变其余位按位取反,负数的补码就是在反码的基础上+1。
扩展资料:
原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。
原码不能直接参加运算,可能会出错。例如数学上,1+(-1)=0,而在二进制中00000001+10000001=10000010,换算成十进制为-2。显然出错了。所以原码的符号位不能直接参与运算,必须和其他位分开,这就增加了硬件的开销和复杂性。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。
补码“模”概念的引入、负数补码的实质、以及补码和真值之间的关系所揭示的补码符号位所具有的数学特征,无不体现了补码在计算机中表示数值型数据的优势,和原码、反码等相比可表现在如下方面:
(1)解决了符号的表示的问题;
(2)可以将减法运算转化为补码的加法运算来实现,克服了原码加减法运算繁杂的弊端,可有效简化运算器的设计;
(3)在计算机中,利用电子器件的特点实现补码和真值、原码之间的相互转换,非常容易;
(4)补码表示统一了符号位和数值位,使得符号位可以和数值位一起直接参与运算,这也为后面设计乘法器除法器等运算器件提供了极大的方便。
参考资料:百度百科-原码、百度百科-补码