求证:1/(2^1-1)+1/(2^2-1)+1/(2^3-1).........+1/(2^n-
求证:1/(2^1-1)+1/(2^2-1)+1/(2^3-1).........+1/(2^n-1)≤5/3...
求证:1/(2^1-1)+1/(2^2-1)+1/(2^3-1).........+1/(2^n-1)≤5/3
展开
2个回答
展开全部
1/(2^1-1)+1/(2^2-1)+1/(2^3-1).........+1/(2^n-1)
=1*(2^1+1)/(2^1-1)(2^1+1)+1*(2^2+1)/(2^2-1)(2^2+1).......+1*(2^n+1)/(2^n-1)(2^n+1)
令an=1*(2^n+1)/(2^n-1)(2^n+1)
=(2^n+1)/(4^n-1)
<(2^n+2)/4^n
=1/2^n+2*1/2^n
所以:s<1+2/3=5/3
=1*(2^1+1)/(2^1-1)(2^1+1)+1*(2^2+1)/(2^2-1)(2^2+1).......+1*(2^n+1)/(2^n-1)(2^n+1)
令an=1*(2^n+1)/(2^n-1)(2^n+1)
=(2^n+1)/(4^n-1)
<(2^n+2)/4^n
=1/2^n+2*1/2^n
所以:s<1+2/3=5/3
追问
这是另一个知道的答案,我要另一种解法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询