什么是线性方程
11个回答
展开全部
线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。[1]
因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
线性方程也称为一次方程,因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是算数式而非方程式。
如果一个一次方程中只包含一个变量(x),那么该方程就是一元一次方程。如果包含两个变量(x和y),那么就是一个二元一次方程,以此类推。
一元方程式
一元一次方程式是指一个方程式中仅含有一个变量,且等号两边至少有一个一次单项式的方程。[2]
任意一个一元一次方程形式经化
的方程。它的解为
。
以下就是一个例子:
它的解便是:
一元一次方程式是等于一条线性方程式:简单点来说,如
或以上的次方是不容许的。
注意:当 a=0时
ax+b=0不是一元一次方程式。
如果
,此方程式无限多解;如果b=0,则此方程式恰一解。
线性方程形式
形为 ax+by+...+cz+d=0 ,关于x、y的线性方程,是指经过整理后能变形为ax+by+c=0的方程(其中a、b、c为已知数,a、b不同时为0)。一元线性方程是最简单的方程,其形式为ax=b。因为把一次方程在坐标系中表示出来的图形是一条直线,故称其为线性方程。
应用
二元一次联立方程式
求解二元一次联立方程式可以使用代入消去法或加减消去法。[1]
代入消去法
代入消去法就是先利用其中一个方程,将含有其中一个未知数的代数式表示另一个未知数。然后代入另一个方程,从而将这组方程转化成解两个一元一次方程式的方法。
例如:
解
得
再代入
即
从而求出
加减消去法
加减消去法就是将两个方程加或相减,从而消去其中一个未知数的方法。
通常,我们先将其中一个方程的两边同时乘以一个不是0的数,使其中的一个系数与另外一个方程的对应系数相同。再将两个方程相加或相减。
例如:
把两式相加消去x,即
从而求出
联系
线性化关系
在例子中(不是特例)变量y是x的函数,而且函数和方程的图像一致。
这里f有如下特性:
f(x+y)=f(x)+f(y)
f(ax)=af(x)
这里a不是向量。
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫线性化。
因为线性的独特属性,在同类方程中对线性函数的解决有叠加作用。这使得线性方程最容易解决和推演。
线性方程在应用数学中有重要规律。使用它们建立模型很容易,而且在某些情况下可以假设变量的变动非常小,这样许多非线性方程就转化为线性方程。
与微分的联系
若
,则
。
所以,线性函数并无驻点,即没有极大值和极小值,且线性函数的斜率是未知数x 的系数。
因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
线性方程也称为一次方程,因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是算数式而非方程式。
如果一个一次方程中只包含一个变量(x),那么该方程就是一元一次方程。如果包含两个变量(x和y),那么就是一个二元一次方程,以此类推。
一元方程式
一元一次方程式是指一个方程式中仅含有一个变量,且等号两边至少有一个一次单项式的方程。[2]
任意一个一元一次方程形式经化
的方程。它的解为
。
以下就是一个例子:
它的解便是:
一元一次方程式是等于一条线性方程式:简单点来说,如
或以上的次方是不容许的。
注意:当 a=0时
ax+b=0不是一元一次方程式。
如果
,此方程式无限多解;如果b=0,则此方程式恰一解。
线性方程形式
形为 ax+by+...+cz+d=0 ,关于x、y的线性方程,是指经过整理后能变形为ax+by+c=0的方程(其中a、b、c为已知数,a、b不同时为0)。一元线性方程是最简单的方程,其形式为ax=b。因为把一次方程在坐标系中表示出来的图形是一条直线,故称其为线性方程。
应用
二元一次联立方程式
求解二元一次联立方程式可以使用代入消去法或加减消去法。[1]
代入消去法
代入消去法就是先利用其中一个方程,将含有其中一个未知数的代数式表示另一个未知数。然后代入另一个方程,从而将这组方程转化成解两个一元一次方程式的方法。
例如:
解
得
再代入
即
从而求出
加减消去法
加减消去法就是将两个方程加或相减,从而消去其中一个未知数的方法。
通常,我们先将其中一个方程的两边同时乘以一个不是0的数,使其中的一个系数与另外一个方程的对应系数相同。再将两个方程相加或相减。
例如:
把两式相加消去x,即
从而求出
联系
线性化关系
在例子中(不是特例)变量y是x的函数,而且函数和方程的图像一致。
这里f有如下特性:
f(x+y)=f(x)+f(y)
f(ax)=af(x)
这里a不是向量。
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫线性化。
因为线性的独特属性,在同类方程中对线性函数的解决有叠加作用。这使得线性方程最容易解决和推演。
线性方程在应用数学中有重要规律。使用它们建立模型很容易,而且在某些情况下可以假设变量的变动非常小,这样许多非线性方程就转化为线性方程。
与微分的联系
若
,则
。
所以,线性函数并无驻点,即没有极大值和极小值,且线性函数的斜率是未知数x 的系数。
展开全部
齐次的意思大概就是次数相同,但是微分方程中一些所谓的“齐次”概念确实不太一样。
1.齐次方程。y'=F(y/x)
介绍齐次方程时对“齐次”的定义应该是“关于x,y次数相等”。比如x平方、xy、y平方都是2次,常数、y'、y/x都是0次。
y'=F(y/x)便是齐次
2.一阶线性微分方程dy/dx+P(x)y=Q(x)。
这一节里面提到Q(x)=0时称齐次,所以这里的“齐次”和上面的应该是不一样的。这里的定义是“关于函数y及其导数y',y",......次数相等,方程中无自由项(即那些不含y,y',y''的项,如x、1、x平方)”
1.齐次方程。y'=F(y/x)
介绍齐次方程时对“齐次”的定义应该是“关于x,y次数相等”。比如x平方、xy、y平方都是2次,常数、y'、y/x都是0次。
y'=F(y/x)便是齐次
2.一阶线性微分方程dy/dx+P(x)y=Q(x)。
这一节里面提到Q(x)=0时称齐次,所以这里的“齐次”和上面的应该是不一样的。这里的定义是“关于函数y及其导数y',y",......次数相等,方程中无自由项(即那些不含y,y',y''的项,如x、1、x平方)”
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
线性方程(linear equation):代数方程,如y =2 x +7,其中任一个变量都为一次幂。定义线性方程也称为一次方程,因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
所谓线性方程,一般就是指直线方程,它的图形是一条直线的方程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询