求助,一道高数极限题。x从左侧趋近于1,求lim(1-x)^(tanπx/2)
2个回答
展开全部
L =lim(x->1-) (1-x)^tan(πx/2)
lnL =lim(x->1-) ln(1-x) / tan(πx/2) ( ∞/ ∞)
=lim(x->1-) [-1/(1-x)] /[ (π/2)[sec(πx/2)]^2 ]
=(-2/π) lim(x->1-) [cos(πx/2)]^2/(1-x) (0/0)
=(-2/π) lim(x->1-) 2(π/2)[cos(πx/2)] sin(πx/2) .
= -2lim(x->1-)[cos(πx/2)] sin(πx/2)
=0
L = e^0 =1
ie
lim(x->1-) (1-x)^tan(πx/2) =1
lnL =lim(x->1-) ln(1-x) / tan(πx/2) ( ∞/ ∞)
=lim(x->1-) [-1/(1-x)] /[ (π/2)[sec(πx/2)]^2 ]
=(-2/π) lim(x->1-) [cos(πx/2)]^2/(1-x) (0/0)
=(-2/π) lim(x->1-) 2(π/2)[cos(πx/2)] sin(πx/2) .
= -2lim(x->1-)[cos(πx/2)] sin(πx/2)
=0
L = e^0 =1
ie
lim(x->1-) (1-x)^tan(πx/2) =1
追问
可是这道题答案是0啊
追答
不好意思, 该是这样
lim(x->1-) (1-x)^tan(πx/2)
x->1- 01-) tan(πx/2) -> ∞
lim(x->1-) (1-x)^tan(πx/2)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询