高二数学问题,请各位高手帮忙!
在菱形ABCD中,∠A=60度,AB=2(1)沿对角线BD将△ABD折起,问A、C之间距离为多少时,二面角A-BD-C为直二面角;(2)在(1)的基础上,求二面角A-CD...
在菱形ABCD中,∠A=60度,AB=2(1)沿对角线BD将△ABD折起,问A、C之间距离为多少时,二面角A-BD-C为直二面角;(2)在(1)的基础上,求二面角A-CD-B的大小(用反正切表示)(3)在(1)的基础上,求点B到平面ACD的距离.
展开
1个回答
展开全部
菱形ABCD中,∠A=60度,AB=2
(1)
三角形ABD和三角形BCD是正三角形
设菱形对角线交点O,则OA=OC=(√3/2)*2=√3
AO⊥BD,CO⊥BD,角AOC即二面角A-BD-C的夹角
若使这个二面角是直二面角
OA^2+OC^2=AC^2=3+3=6
AC=√6
(2)
OD=1,AC=√6,OC=√3
AD=CD=2,作AE⊥CD
cos∠ADC=1/4[据余弦定理]
ED=AD*cos∠ADC=1/2
作EF⊥CD交BD于F,因为∠CDB=60°
DF=2DE=1,F即O点,EF=√(1-1/4)=√3/2
AO=AF=√3
∠AEF(O)=二面角A-CD-B
tan∠AEO=AF/EF=AO/EO=2
∠AEF=arctan(2)
(3)
作BG⊥CD于G,G为CD中点,BG=√3
在平面ABD内作BH⊥BD,交DA延长线于H
BH=2AO=2√3,GH=√(3+12)=√15
BG//EF,BH//AO,则GH//AE,GH⊥CD
在直角三角形BGH中,作BM⊥GH于M
BM/GM=2,令GM=x,BM=2x
则,√5x=BG=√3,x=√15/5,BM=2√15/5
因为CD⊥BG,CD⊥GH,则CD⊥BM
又,BM⊥GH,所以,BM⊥平面ACD
BM即B到平面ACD的距离:2√15/5
(1)
三角形ABD和三角形BCD是正三角形
设菱形对角线交点O,则OA=OC=(√3/2)*2=√3
AO⊥BD,CO⊥BD,角AOC即二面角A-BD-C的夹角
若使这个二面角是直二面角
OA^2+OC^2=AC^2=3+3=6
AC=√6
(2)
OD=1,AC=√6,OC=√3
AD=CD=2,作AE⊥CD
cos∠ADC=1/4[据余弦定理]
ED=AD*cos∠ADC=1/2
作EF⊥CD交BD于F,因为∠CDB=60°
DF=2DE=1,F即O点,EF=√(1-1/4)=√3/2
AO=AF=√3
∠AEF(O)=二面角A-CD-B
tan∠AEO=AF/EF=AO/EO=2
∠AEF=arctan(2)
(3)
作BG⊥CD于G,G为CD中点,BG=√3
在平面ABD内作BH⊥BD,交DA延长线于H
BH=2AO=2√3,GH=√(3+12)=√15
BG//EF,BH//AO,则GH//AE,GH⊥CD
在直角三角形BGH中,作BM⊥GH于M
BM/GM=2,令GM=x,BM=2x
则,√5x=BG=√3,x=√15/5,BM=2√15/5
因为CD⊥BG,CD⊥GH,则CD⊥BM
又,BM⊥GH,所以,BM⊥平面ACD
BM即B到平面ACD的距离:2√15/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询