高数不定积分∫(cosx)^8dx求详解,是(cosx)^8而不是cos(x^8)

 我来答
别璎关语柔
2020-09-07 · TA获得超过1110个赞
知道小有建树答主
回答量:1291
采纳率:76%
帮助的人:6.7万
展开全部
(cosx)^8 =[( cosx)^2]^4 = (1/16) (1 + cos2x)^4 = (1/16) [ (1 + cos2x)^2 ]^2
= (1/16) [ 1 + 2 cos2x +( cos2x)^2 ]^2 = (1/4) [ 3/2 + 2 cos2x + (1/2)cos4x ]^2
= (1/16) [ 9/4 + 4 (cos2x)^2 + (1/4) ( cos4x)^2 + 6 cos2x +(3/2) cos4x + 2 cos2x cos4x ]
= (1/16)【9/4 + 2 + 2 cos4x + 1/8 + (1/8) cos8x + 6cos2x +(3/2) cos4x + cos6x + cos2x 】
= 35/128 + (7/16)cos2x + (7/32)cos4x + (1/16)cos6x + (1/128)cos8x
原式= 35 x /128 + (7/32)sin2x +(7/128)sin4x + (1/96)sin6x + (1/1024)sin8x + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式