这道高数极限题怎么做?
3个回答
展开全部
x->0
(1+x)^(1/x)
=e^[ ln(1+x)/x]
=e^{ [ x-(1/2)x^2 +o(x^2)] /x }
=e^[ 1-(1/2)x +o(x)]
(1+x)^(1/x) -e
=e^[ 1-(1/2)x +o(x)] -e
=e. {e^[-(1/2)x +o(x)] - 1}
=e. [ -(1/2)x +o(x) ]
lim(x->0) [(1+x)^(1/x) -e ]/x
=lim(x->0) e. [ -(1/2)x ]/x
=-(1/2)e
(1+x)^(1/x)
=e^[ ln(1+x)/x]
=e^{ [ x-(1/2)x^2 +o(x^2)] /x }
=e^[ 1-(1/2)x +o(x)]
(1+x)^(1/x) -e
=e^[ 1-(1/2)x +o(x)] -e
=e. {e^[-(1/2)x +o(x)] - 1}
=e. [ -(1/2)x +o(x) ]
lim(x->0) [(1+x)^(1/x) -e ]/x
=lim(x->0) e. [ -(1/2)x ]/x
=-(1/2)e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询