三阶矩阵已知三个特征值,一个特征向量,怎么求其余特征值和原矩阵?

 我来答
帐号已注销
2021-01-02 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

a1=(1,0,1)

任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化

a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)

a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)

根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量

取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)

A=Pdiag(1,-1,-1)P^(-1)

扩展资料:

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

特征值的几何重次是相应特征空间的维数。

有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

参考资料来源:百度百科-特征向量

arongustc
科技发烧友

2020-08-26 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:6026万
展开全部
a1=(1,0,1)

任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
乾暄秋梵0kO
2020-08-26 · TA获得超过510个赞
知道小有建树答主
回答量:1775
采纳率:0%
帮助的人:169万
展开全部
注意对称矩阵的属于不同特征值的特征向量是正交的。由此可以求出属于另两个特征值的特征向量,以这三个特征向量的坐标为列构造一个矩阵P,则
P^-1AP=diag(入1,入2,入2)
由此可求出矩阵A来了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友72192f7
2021-12-17
知道答主
回答量:6
采纳率:0%
帮助的人:1339
展开全部
a1=(1,0,1)
任意取两个和a1线性无关的向量a2=(1,0,0), a3=(0,1,0),然后进行斯密特正交化
a2' = a2 - <a2,a1>/<a1,a1> * a1 = (1,0,0) - 1/2 * a1 = (1/2, 0, -1/2)
a3' = a3 - <a3,a1>/<a1,a1> a1 = (0,1,0)
根据对称矩阵不同特征值的特征向量关系a2', a3'是-1对应的特征向量
取P=(a1,a2', a3'),则P^(-1)AP = diag(1,-1,-1)
A=Pdiag(1,-1,-1)P^(-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式