数列﹛an﹜的前n项和Sn满足﹙a-1﹚Sn=a﹙an-1﹚﹙a>0,且a≠1﹚,数列﹛bn﹜满足bn=an•lg an
1个回答
展开全部
解:已知Sn满足﹙a-1﹚Sn=a﹙an-1﹚……(1)
则﹙a-1﹚Sn-1=a﹙an-1-1﹚……(2)
(1)—(2)得﹙a-1﹚(Sn—Sn-1)=a﹙an-an-1﹚
即﹙a-1)an=a﹙an-an-1﹚→an/an-1=a
由(1)式,令n=1得a1=a
∴an为等比数列,且an=a×a^(n-1)=a^n
∴bn=an•lg an=a^n•lg a^n=lg a×na^n
∴Tn=b1+b2+b3+……+bn
=lg a(1•a+2•a²+……+na^n)……(3)
aTn=lg a[1•a²+2•a^3+……+(n-1)a^n+na^(n+1)]……(4)
(3)—(4)得:(1-a)Tn=lg a[a+a²+a^3+……+a^n-na^(n+1)]
=lg a[a(1-a^n)/(1-a)—na^(n+1)]
∴Tn={lg a[a(1-a^n)/(1-a)—na^(n+1)]}/(1-a)
则﹙a-1﹚Sn-1=a﹙an-1-1﹚……(2)
(1)—(2)得﹙a-1﹚(Sn—Sn-1)=a﹙an-an-1﹚
即﹙a-1)an=a﹙an-an-1﹚→an/an-1=a
由(1)式,令n=1得a1=a
∴an为等比数列,且an=a×a^(n-1)=a^n
∴bn=an•lg an=a^n•lg a^n=lg a×na^n
∴Tn=b1+b2+b3+……+bn
=lg a(1•a+2•a²+……+na^n)……(3)
aTn=lg a[1•a²+2•a^3+……+(n-1)a^n+na^(n+1)]……(4)
(3)—(4)得:(1-a)Tn=lg a[a+a²+a^3+……+a^n-na^(n+1)]
=lg a[a(1-a^n)/(1-a)—na^(n+1)]
∴Tn={lg a[a(1-a^n)/(1-a)—na^(n+1)]}/(1-a)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询